NASA Technical Memorandum 86740

Design and Initial Application of the
Extended Aircraft Interrogation and
Display System

Multiprocessing Ground Support
Equipment for Digital Flight Systems

Richard D. Glover

Januar y 1987

NNASN

National Aeronautics and
Space Administration

NASA Technical Memorandum 86740

Design and Initial Application of the
Extended Aircraft Interrogation and
Display System

Multiprocessing Ground Support
Equipment for Digital Flight Systems

Richard D. Glover
Ames Research Center, Dryden Flight Research Facility, Edwards, California

1987

NASAN

National Aeronautics and

Space Administration

Ames Research Center

Dryden Flight Research Facility
Edwards, California 93523-5000

CONTENTS

LIST OF TABLES ¢ ¢ ¢ o o s o ¢ ¢ o o o o o o o o o o o o
LIST OF FIGURES o ¢ o o o o o o o o o o ¢ o o s o o o o o
LIST OF SCREEN DISPLAYS 4 o o o o o o ¢ ¢ o o o o 6 o o o
SUMMARY o o o o o o o o s o o o o o o o o o o o o o o o =
INTRODUCTION o o o o o ¢ o o o o o o o o o o o o o o o o
NOMENCLATURE ¢ o o ¢ o o o ¢ o o o o o o o o o o o o o o
DESIGN OBJECTIVES &« o o o o ¢ o ¢ o o ¢ o o o o o o o o o
SUMMARY OF REQUIREMENTS « + o o o ¢ ¢ ¢ o 5 o o o o o o o
SYSTEM HARDWARE OVERVIEW + ¢« o ¢ o o o ¢ o o s o o ¢ o o
FUNCTIONAL DESCRIPTION & o o ¢ ¢ o o o ¢ « o o o s o o o
SOFTWARE OVERVIEW o o o« o o ¢ ¢ ¢ ¢ o ¢ o o o o o o o o o
MAINTENANCE PROCESSOR SOFTWARE ¢« ¢ o ¢ ¢ o o o o o o o o
PERIPHERAL PROCESSOR SOFTWARE « « ¢ o o o o o o s o o o o
REAL-TIME PROCESSOR SOFTWARE =« « s o s o o o o o o o o &
CENTRAL PROCESSOR XAIDS JOB SOFTWARE .+ o o ¢ o o o« o o o
XAIDS-USER INTERFACES OVERVIEW o o o o o ¢ ¢ ¢ ¢ o o o o
XAIDS CONFIGURATION FOR X-29A PROJECT SUPPORT « o o o o &
OPERATION OF THE X=29A XAIDS ¢ « o o o o o ¢ o o o o o o
GUIDE FOR THE PROSPECTIVE XAIDS OWNER ¢ ¢ ¢ o o o o o o o
FUTURE XAIDS DEVELOPMENTS « « ¢ ¢ o o o o o ¢ o o o o o o

CONCLUD ING REMA.RKS o 0 ® e e 8 o & & + & 2 3 & s o+ 0 o 0\

APPENDIX A - PROTOTYPE REMOTE DATA ACQUISITION SUBSYSTEM

APPENDIX B - XAIDS SYSTEM INTERRUPT UTILIZATION « + o o
APPENDIX C - RTPRO RAW DATA PROCESSING ALGORITHMS . « + &
APPENDIX D - RTPRO USER SUPPORT SUBROUTINES ¢ o ¢ o o o &
APPENDIX E - CENPRO USER SUPPORT SUBROUTINES . + &+ ¢ o

REFERENCES & ¢ o o ¢ o o o o o o o o 5 o ¢ s o o o o o o
TABLES ¢ ¢ ¢ ¢ o ¢ o o ¢ o o o o o o o o o o o o o o o
FIGURES ¢ o ¢ o o o 2 o o o o o o o ¢ o o o o s o o o o o
DISPLAYS ¢ « o o o o ¢ o ¢ o ¢ o o o o o o o o o o o o o

iii

Page

vii

ix

N A b W

10
10
11
12
16
19
21
26
28
29
30
32
33
37
39
45
45
68
77

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

LIST OF TABLES

XAIDS baseline board complement

XAIDS bus memory mapping

XAIDS bus I/O mapping

RTPRO channel declaration structure
RTPRO data acquisition block structure
RTPRO raw data type declaration structure
RTPRO function generator block structure
CENPRO command declaration structure
CENPRO scratch diskette directory
CENPRO display format declaration structure
Symbol table entry block structure
CENPRO data display item block structure
CENPRO make page display template

CENPRO free form display template

CENPRO RDAS function generator template
ASCII editor entry block structure

X-29A interface channel board complement
XAIDS to RDAS message structure

RDAS to XAIDS reply structure

XAIDS-RDAS packet formats

XAIDS bus interrupt allocation

XAIDS CENPRO interrupt assignments

XAIDS RTPRO interrupt assignments

XAIDS PERPRO interrupt assignments

XAIDS maintenance processor interrupt assignments

LIST OF FIGURES

Figure 1. Extended aircraft interrogation and display system.
Figure 2. XAIDS system overview,

Figure 3. XAIDS status and control panel,

Figure 4. XAIDS input-output panel.

Figure 5. XAIDS functional interfaces.

Figure 6. XAIDS interfaces to X-29A project systems.
Figure 7. XAIDS cardcage.

Figure 8. XAIDS system interface panel.

Figure 9. XAIDS X-29A aircraft interface panel.,
Figqure 10. Remote data acquisition subsystem.

Figure 11. RDAS overview, X-29A configuration.

Figure 12. RDAS cardcage.

Figure 13. RDAS user input-output panel,

Figure 14. XAIDS-RDAS data exchange.

vii

Display
Display
Display
Display
Display
Display
Display
Display
Display
Display
Display
Display
Display
Display
Display
Display
Display
Display
Display
Display

12,
13.
14.
15.
16.
17.
18.
19.
20.

LIST OF SCREEN

Main command menu.,

TEST command menu.

RU command display.

QT command display.

PTCH command menu.

PTCH command edit display.
GAIN command display.

GAIN command help page.
Example MP-driven display.
MP command help page.
Example FF-driven display.
Example FF setup page.

FF command help page.
Example FF command list to CRT.
DK command menu.

Example DK view display.
SYM command menu.

Example SYM edit page.
BAUD command display.

CAL command display.

ix

DISPLAYS

SUMMARY

A pipelined, multiprocessor, general-purpose ground support equipment for dig-
ital flight systems has been developed and placed in service at the NASA Ames
Research Center's Dryden Flight Research Facility. The design is an outgrowth of
the earlier aircraft interrogation and display system (AIDS) used in support of
several research projects to provide engineering-units display of internal control
system parameters during development and qualification testing activities. The new
system, incorporating multiple 16-bit processors, is called extended AIDS (XAIDS)
and is now supporting the X-29A forward-swept-wing aircraft project. This report
describes the design and mechanization of XAIDS and shows the steps whereby a typi-
cal user may take advantage of its high throughput and flexible features.

INTRODUCTION

Several years ago, the NASA Ames Research Center's Dryden Flight Research
Facility (Ames-Dryden) undertook the development of a microprocessor-based, user-
programmable, general-purpose ground support equipment (GSE) called the aircraft
interrogation and display system (AIDS) (ref. 1). This development was spurred by
the need for a research tool to support digital flight systems integration, software
verification and validation, pre~ and postflight testing, and system maintenance.
Prior to that time, special-purpose GSE was procured for each project, resulting in
a multiplicity of different types of equipment having various capabilities.

The original AIDS design was an 8-bit unit used to support F-8 digital fly-by-
wire (F-8 DFBW) flight software verification and validation (V/V). This was fol-
lowed by a second unit built to support highly maneuverable aircraft technology
(HiMAT) flight control computer testing and systems integration. Success with these
early units led to the construction of more units for application to other projects
(ref. 2). Although users universally praised the utility of the AIDS, many sug-
gestions for improving system capabilities were offered, leading ultimately to
the development of an extended AIDS (XAIDS). The overall design objectives for the
new system forced this development effort to take an entirely new approach, which
produced a system mechanization believed to be the first of its kind. 1In addition,
an auxiliary system called the remote data acquisition subsystem (RDAS) was designed
to permit the user to extend the capability of a basic XAIDS as the application
may require.

The XAIDS and RDAS are both designed to be high-bandwidth real-time systems and
can support both open- and closed-loop applications. As an engineering-units data
display system, the user taps into the target system at the desired data flow point,
and the XAIDS passively acquires data and drives operator-specified displays.
Another open-loop application could be as an excitation generator to support re-
sponse testing of the target system. Closed-loop applications include real-time
simulation support with interfaces to either an iron bird or an actual aircraft.
Such simulations could, for example, generate faulty dynamic sensor signals to allow
testing of redundancy management in multichannel systems. Another area of possible
closed-loop application is the interactive control of other GSE, permitting central-
ization of control to a single workstation.

This report will discuss first the generic XAIDS system hardware and software,
pointing out features intended to simplify user interfaces. Then the X-29A forward-
swept-wing aircraft testing application will be discussed from the standpoint of the
user's dual responsibility for engineering compatible add-on hardware and developing
necessary software extensions. Examples of typical operator displays will be shown,
and an overview of basic procedures will be presented. A description of the proto-
type RDAS will be presented in appendix A.

ADC
AIDS
ARINC
BIOS
CENPRO
CLp
CPU
CRT
DAC
DK
EEPROM
FF
GSE
HDLC
IEEE
INTR
I/0
I0P
ISO
LAN

LED

NOMENCLATURE

analog-to-digital converter

aircraft interrogation and display system
Aeronautical Radio Incorporated

basic input-output system

central processor

control law processor

central processing unit

cathode ray tube display

digital-to-analog converter

diskette

electrically erasable programmable read-only memory
free form

ground support‘equipment

high-level data link control

Institute of Electrical and Electronic Engineers
interrupt pushbutton

input-output

input-output processor

International Standards Organization (U.N.)
local area network

light-emitting diode

MAINT maintenance processor

MDS microcomputer development system

MP make page

NDP numeric data processor

NMI nonmaskable interrupt

PERPRO peripheral processor

PROM programmable read-only memory

PTCH patch manager

RAM random access memory

RDAS remote data acquisition subsystem

RETMA Radio~Electronics-Television Manufacturers Association
RTPRO real~time processor

sSCp status and control panel

SDLC synchronous data link control

SEU system evaluation unit

TDU time and date unit

UDI universal development interface

USART universal synchronous-asynchronous receiver-transmitter
v/Vv verification and validation

XAIDS extended aircraft interrogation and display system

DESIGN OBJECTIVES

The fundamental objective of the AIDS-XAIDS family of general-purpose GSE was
to provide an aircraft control system research tool that could support a variety of
projects with minimum reconfiguration of hardware and software. The approach taken
was to provide a baseline host system to which could be added application-dependent
hardware and software to meet specific needs. The success of this approach hinged
on the baseline hardware providing a minimum of constraints on hardware additions
and the baseline software providing a user-friendly environment within which soft-
ware extensions could operate. These goals were not well met in the AIDS mechaniza-
tion, and the second-generation XAIDS effort was aimed at broad improvements in both
hardware and software flexibility.

In general, the design objectives for the XAIDS closely paralleled those for
the AIDS. These included mobility, flexible input-output (1/0), a common core
of generic support software, user-oriented displays, commercial components used
wherever possible, and integral maintenance support. Several years of operational
experience with AIDS showed that numerous major improvements were desirable, leading
to the formulation of the following XAIDS design objectives:

User hardware extensions

—More cardcage slots available for user boards
—Multiple bus master capability

—Both 8- and 16~bit data bus operations allowed
—Larger memory and I/0 mapping space

—More user interrupt lines available

—I/0 extension via local area network

User software extensions

~Simplified interfaces to baseline software
—Structured extensions to ease customizing
—Larger support libraries

—Resident software development capability
—High-order languages available

Baseline environment

—Improved operating system

—liigher system throughput

—Symbolic parameter referencing

—Mass data storage and retrieval

—Faster printer with upper- and lowercase

—Dedicated analog recorder digital-to-analog converters (DACs)
—Operator control of screen refresh rates

—Status and control panel for process management

—Automatic date and time tagging

Maintenance and troubleshocoting
—Full-time operating system debugger
—Full-time maintenance monitor

SUMMARY OF REQUIREMENTS

It was decided at the outset of the XAIDS effort that the listed design objec-
tives could best be met by a distributed system having multiple processors per-
mitting pipelining of concurrent operations. The choice of system bus was somewhat
arbitrary since several bus architectures would have served, but the Institute of
Electrical and Electronic Engineers (IEEE) Standard 796 Bus Specification was chosen
since it offered the widest choice of compatible hardware and software components on
the open market. An analysis of the throughput of such a system showed that 16-bit
processors would be adequate, assuming that hardware floating-point processing were
included, The choice of the 8086 microprocessor with the companion 8087 numeric
data processor (NDP) gave the desired throughput. The remaining objectives were
easily met within this basic environment.

One important carryover from AIDS was its central processor board, for which a
considerable amount of operator I/0 software had been developed. This 8-bit board,
with the AIDS operator I1/0 software placed in programmable read-only memory (PROM),
was to become the intelligent I/O channel for XAIDS operator peripherals. The final
detailed requirements are summarized as follows:

IEEE-796 system bus

—20~bit memory mapping (1 megabyte)
—16-bit I/O mapping

—16~bit-wide data path

—Parallel priority resolution

—Eight bus interrupts

—21-slot cardcage; 3/4-in spacing
—System reset pushbutton

—Pushbutton for interrupt INTO/
—Switching power supply (45 A at 5 V)

Multiple processors

—Central processor (8086 plus 8087 NDP)
—Real-time processor (8086 plus 8087 NDP)
—Peripheral processor (8085); carryover from AIDS
—Maintenance processor (8086); no NDP required

Peripheral I/O devices
—19-megabyte hard disk drive
—Four double-density floppy drives (8 in)
—19, 200-baud operator terminal; 24 lines by 80 columns
—Line printer; upper- and lowercase; paper width up to 15 in
—16 DACs dedicated to analog recorder outputs
—Status and control panel (SCP)
—Eight light-emitting diode (LED) indicators
—Eight debounced high-low switches
—00 to FF hexadecimal thumbwheels
—Manual interrupt pushbutton

Local area network (LAN) controller

—International Standards Organization (ISO) X.25 high-level data link
control (HDLC) and synchronous data link control (SDLC) protocols

—j-megabit/sec data rate

—Phase~-locked loop clock recovery

—Modem capable of driving 5000 £t of bus cable

Operating system

—Complete 8086-based multitasking system

—Custom device drivers for printer and operator terminal

—Utilities for boot loading satellite processors
—IEEE-796 bus slave loader
—LAN remote slave loader

—Full-time debugger

—Must support software development tools

Time and date unit (TDU)

—Julian calendar

~Self-contained rechargeable battery

—Initializes operating system at power-up

—Peripheral processor (PERPRO) interface for data time tagging
—Utility program for resetting time and date

Resident software development support

—Text editor

—Languages: Assembly, FORTRAN, Pascal, PL/M

—Utilities for linking, locating, and library functions

SYSTEM HARDWARE OVERVIEW

Figure 1 shows the general appearance of the two-bay XAIDS console. It is
mounted on wheels for mobility and requires 120-v single-phase power from a standard
wall outlet. Power consumption is approximately 1200 W, and numerous blowers within
the console provide ample cooling even in non-air-conditioned hangar and ramp areas.

Figure 2 shows an overview of the XAIDS bus architecture; each solid-outline box
represents a board plugged into the 21-slot large cardcage carrying the system bus.
Four processors form the baseline complement: the central processor (CENPRO), the
real-time processor (RTPRO), the peripheral processor (PERPRO), and the maintenance
processor (MAINT). Mass storage is provided by a 19-megabyte hard disk drive plus
four floppy diskette drives each providing 0.5 megabyte on single-sided double-
density diskettes. A local area network (LAN) controller provides a 1-MHz serial
addressable interface using synchronous data link control (SDLC) protocol. This
LAN is currently confiqured to interface with the prototype RDAS described in appen-
dix A. The prototype RDAS bears address 01; additional RDAS units may be added as
user requirements dictate. A time and date unit (TDU) board provides clock and
calendar readouts to the operating system and contains batteries to sustain time-
keeping even when the XAIDS is powered down. The line printer and operator terminal
are permanent peripherals and provide the basic operator interfaces.

An additional permanent feature of the baseline XAIDS is the status and control
panel (SCP), shown in figure 3. This unit is interfaced to the RTPRO and provides a
general~purpose operator interface. Eight light-emitting diode (LED) indicators are
provided for visual readout; each LED has a monitoring jack suitable for oscil-
loscope monitoring of its drive signal. Eight switches with debounced contacts are
provided for generating high-low input discretes, and two hexadecimal thumbwheels
provide another 8-bit input register. The interrupt (INTR) pushbutton is debounced
and generates one RTPRO interrupt each time it is actuated. Since the thumbwheels
are not debounced, it is usually desirable to use the INTR pushbutton to generate a
software snapshot of the setting of the thumbwheels.,

The analog recorder outputs from the XAIDS are driven by 12-bit digital-to-
analog converter (DAC) units on RTPRO. There are 16 channels of ~5 to +5 V
accessed through two connectors on the XAIDS I/O panel, shown in figure 4. This
panel, located at the lower right rear of the console, provides the mounting for
the LAN interface connector.

Table 1 shows the board complement for the baseline XAIDS. The CENPRO serves
as the host for the RMX86 operating system, which resides partly in PROM and partly
in random access memory (RAM). The two auxiliary memory boards (the auxiliary RAM
board and the auxiliary PROM board) serve to augment, respectively, the RAM and PROM
found on CENPRO proper. The nine empty slots are reserved for user-selected 1/0
channel boards that provide the hardware interface to the user's target system. The
RTPRO and the LAN channel board both require two slots because of the aboveboard
height of the piggyback modules they carry. Appendix B details the assignment of
interrupts throughout the system, including those on the bus and on RTPRO reserved
for the user,

FUNCTIONAL DESCRIPTION

At system power-on, the XAIDS begins an automatic bootstrap load operation that
ends with the operating system (described later) in control of CENPRO. The oper-
ating system is configured for a single resident user (assigned number 1) who is
given access to the operating system through the human interface by means of the
operator terminal. This allows the XAIDS operator to access all the resources of
the operating system, including editors, language processors, and software develop-
ment utilities, by entering commands on the terminal keyboard. It also allows the
operator to load and execute custom utilities and other jobs (called I/0 jobs) that
have been created (by NASA) to make the hardware perform desired user functions.
One of these custom I/0 jobs is the XAIDS executive, which has been previously con-
figured to service a particular XAIDS application (although a non-user-specific
"default” version also exists for test purposes). It is loaded by entering the com-
mand XAIDS, at which time it takes control of the hardware and remains in control
until the operator forces an exit back to the RMX86 operating system.

During the time the XAIDS I/O job is running, the system takes on the character
of the pipelined multiprocessor architecture shown in figure 5. The arrows show the
direction of information flow during a typical data acquisition and display cycle.
Data flow in general from left to right in the figure, with the vertical dashed
lines demarcating the five stages of the pipeline. The symbol table shown at the
bottom of the figure is the one element of the system that is not directly part of
the pipeline but is rather a data base for XAIDS supervisory software.

The I/0 channel boards shown at the left of the figure constitute the first
stage of the pipeline. The TDU and LAN are considered baseline system channels.
The system, when configqured for a specific user, will normally have one or more user
I/0 channel boards as well. The essential function of this I/0 complement is to
interface external equipment to the IEEE-~796 bus, with the one exception of the TDU,
which is self-contained. The I/O channels may fall into one of three categories:
nonintelligent slaves (such as the TDU), intelligent channels executing onboard
firmware (such as the LAN), and intelligent channels executing software that must
first be loaded into onboard RAM. A bootstrap loader utility has been created that
can load any channel having in firmware the required startup routine.

The next stage is RTPRO, which handles any and all time-critical functions asso-

ciated with the user application. It is loaded using the bootstrap locader utility
mentioned previously and is responsible for I/O0 channel management, raw data preproc-

essing, and analog recorder servicing, in addition to any user-supplied real-time

routines. The channel handlers provide a standard interface to the data acquisition
executive and may be executed either polled or interrupt-driven. Notice that the
TDU does not have a channel handler, because it is polled from CENPRO, The data
acquisition executive is responsible for all data flow within RTPRO and services two
separate structures, one for the analog recorder interface (high speed) and the
other for the operator display (on demand). It is supported by a set of raw data
type handlers that perform parameter type conversion to NDP-compatible formats.
Parameter mapping and type conversion specifications are fetched from the symbol
table as required.

The third pipeline stage is CENPRO, which under the XAIDS I/C job is given the
main task of interpreting and carrying out operator commands. This requires it to
exercise control over both RTPRO and PERPRO while carrying out baseline tasks as
well as servicing whatever user-defined commands are present, For data acquisition
and display, the operator will normally load a previously created display page from
floppy diskette. The display page handler will then perform page setup: fetch
information as required from the symbol table, create a display control structure,
set up the RTPRO data acquisition executive, and initialize PERPRO to drive the
display. It then serves as the intermediary between RTPRO and PERPRO, fetching data
as required and formatting each parameter in turn using the display format handler
routines. In addition, CENPRO has the ongoing task of periodically polling the TDU
and sending updated time and date information to PERPRO.

The PERPRO, the fourth stage in the XAIDS pipeline, uses firmware to manage the
digital peripherals of the fifth stage, namely, the operator keyboard, cathode ray
tube (CRT) display, and the line printer. The PERPRO provides line-edited operator
input strings from the keyboard in several formats, checking for error locally
before sending the string on to CENPRO for interpreting. The PERPRO also drives the
CRT in several output modes, including the cursor-vectored high-speed refresh mode
normally used for data displays. It responds to operator keyboard command sequences
to select the desired screen refresh period from 0.1 to 1.5 sec. It also responds
to a special keyboard command to snapshot the screen buffer and send it to the line
printer buffer for editing and dumping to printer. Both the screen displays and
the printer dumps are tagged with the current date and time of day to the nearest
second.

SOFTWARE OVERVIEW

The XAIDS software suite may be broken into three major categories. The largest
body of software is the commercial operating system, which was purchased from the
Intel Corporation and configured for the XAIDS architecture. The second category is
the XAIDS baseline software complement (generic, user independent), which includes a
mix of firmware (PROM~resident) and RAM-resident modules for the four system proc-
essors. The third category contains the user-dependent software modules, including
two RAM-resident packages, one for the CENPRO and one for the RTPRO, plus whatever
firmware or software is required to support the user 1/0 boards. All processors in
the system (including user I/0 boards) have PROMs containing firmware that begins
executing when power is applied. The CENPRO and RTPRO (and usually the user I/0
processors as well) are then automatically loaded with software from the hard
disk drive,

Table 2 shows the mapping of the various XAIDS system elements within the memory
space accessible through the IEEE-796 bus using 20-bit addressing. Three-fourths of
the available 1 megabyte of memory domain are occupied by the CENPRO RAM, the aux-
iliary RAM board, and the RTPRO RAM in three contiguous 256K blocks. The remaining
space is allocated as shown to the LAN controller, PERPRO RAM, user I/0, and auxil-
iary PROM, The uppermost 64K block is not used. Table 3 shows the mapping of sys-
tem elements within the I/0 address space, which is a separate 64K domain paral-
leling the memory-mapped domain. Notice that the TDU decodes only the lower 8 bits
of the I/0 address and thus is aliased into 256 separate 8-byte blocks within the
domain. Such a mix of address decoding is acceptable only because none of the
16-bit I/O-mapped devices impinge on these multiple blocks.

The operating system software currently used in the XAIDS is the Intel iRMX86
release 5, to which has been added custom device drivers for the TDU, line printer,
and operator terminal. The operating system is given exclusive access to the entire
CENPRO RAM as well as the entire auxiliary RAM board. A portion of the total oper-
ating system is contained in PROMs on CENPRO proper, a portion is resident on the
auxiliary PROM board, and the remainder is loaded from the hard disk drive into
CENPRO and auxiliary RAM during the bootstrap load operation. The Intel-supplied
bootstrap loader firmware was slightly modified to permit switch selection of either
the normal hard disk boot mode or a backup bootstrap mode using one of the four
floppy diskette drives.

The total operating system is a full-up configquration incorporating all the
Intel-provided release 5 options, including the universal development interface
(UDI). The UDI serves as the host for the software development tools available to
the operator through the human interface command interpreter. Another permanent
feature of the operating system is a full-time RMXB6 debugger, which may be accessed
while the system is executing without disturbing current job execution. To use the
debugger, a separate terminal set for 9600 baud must be mated to the CENPRO connec-
tor on the system interface panel inside the left rear of the XAIDS cabinet, The
debugger, activated with the single keystroke command <cntl D>, permits examination
of the entire spectrum of operating system objects. This tool is invaluable for
assessing system allocation of resources (especially memory) and is the only means
whereby such system problems as task deadlock can be diagnosed. The debugger is
deactivated by entering @ <return>.

When the operating system begins to execute following completion of the bootstrap
load process, the human interface submits the log-on file (pathname :prog:r?logon),
causing the operating system to perform the steps specified. This text file is
created using the system text editor and can perform any system functions desired by
the user. Currently this file is configured to first load the RDAS through the LAN
using a system utility program called RBOOT. The final step is the loading of the
XAIDS executive program (called XAIDS), which in turn handles the loading of user
boards and RTPRO. This logon file thus completes the automatic bootstrap process,
which begins when the XAIDS is powered up, and takes the user directly to the XAIDS
executive command list interpreter.

The operator is given the freedom to return to the RMX86 human interface when-
ever desired by entering the XAIDS command EXIT. While running under the human
interface, several XAIDS utilities are available to the operator: the RDAS loader
(RBOOT), the slave loader (BOOT), and the TDU setup program (TCU). Program RBOOT

permits the operator to reload the RDAS as required. If the RDAS has previously
been loaded, the RBOOT commands RDAS to dump its load and the new program is then
loaded. The utlllty BOOT allows the operator to "manually" load a slave processor,
rather than have the XAIDS executive do it. If the slave has already been loaded,
BOOT aborts the load process with an appropriate error message. The INTO pushbutton
can be used to send an interrupt, forcing all slaves to purge previously loaded
programs so that BOOT can be used to reload one or more of them. The utility TCU
permits the operator to reset the time and date registers of the TDU as required to
correct for drift or to permit daylight saving time or standard time adjustments.
The operator may reload the XAIDS executive at any time by entering the human inter-
face command XAIDS.

MAINTENANCE PROCESSOR SOFTWARE

The maintenance processor (MAINT) is a 16-bit single-board computer configured
as a bus master that is designed to access the entire IEEE-796 bus including both
the memory-mapped and the I/O-mapped domains. The current MAINT program is resident
in onboard PROMs and provides most of the features usually found in a monitor pro-
gram, including memory read-write and I/0O read-write. A separate terminal, which
is connected to the system interface panel inside the XAIDS rack (accessible through
the left rear door), is required to use MAINT. This terminal may employ any baud
rate in the range 110 to 19,200. When the XAIDS is powered up, the MAINT firmware
enters a lockon loop, which senses one or two capital letter U keystrokes to deter-
mine the baud rate. The program then displays a command menu including an H (help)
command, whereupon the operator may perform any desired system troubleshooting oper-
ations. Until the program is called upon to examine or alter system-mapped hardware
or software, no bus operations are involved, and there is thus no loading of the
system. A purely passive function performed by MAINT starting at power-up is the
monitoring of the eight bus interrupts; when sensed, each causes a counter to be
incremented. These eight counters may be displayed on the maintenance terminal
whenever desired.

PERIPHERAL PROCESSOR SOFTWARE

The peripheral processor (PERPRO) is an 8~bit single-board computer configured
as a bus slave that services the operator CRT and keyboard, the line printer, and
the bus timeout light on the panel below the operator terminal. The PERPRO software
is resident in onboard PROM and executes in three separate modes: reset, RMX86 1/0,
and XAIDS. Communication with PERPRO is accomplished through PERPRO RAM control
structures that are accessible to any bus master through the system bus (memory-
mapped domain). When the system is powered up, PERPRO firmware begins executing
immediately, performing an initialization sequence, entering reset mode, and dis-
playing a sign-on message on the CRT. Whenever the human interface is running in
CENPRO, the PERPRO switches to RMX86 mode, in which the CRT, keyboard, and line
printer become I/O devices belonging to the operating system. If the XAIDS execu-
tive is loaded, the PERPRO mode switches to XAIDS, during which the firmware
responds to numerous specialized commands for keyboard input sequences, screen
display functions, and line printer operations (including screen snapshot) that are

not available in RMX86 mode., These special functions are tailored for high-speed
support of the XAIDS page displays at refresh rates up to 10 Hz.

REAL-TIME PROCESSOR SOFTWARE

The real-time processor (RTPRO) is a 16-bit single-board computer configured as
a bus master that directly services the analog recorder DAC outputs, the SCP, and
an RS-232 serial port. The RTPRO software consists of two elements: a startup
package resident in onboard PROM and a RAM-resident load module that is downloaded
either by the BOOT utility or by the XAIDS executive. When the system is powered
up, the firmware begins executing immediately and waits until a RAM-resident module
download has been completed. At that time, the firmware passes control to the load
module, which will remain in control unless the INTO pushbutton forces a return to
firmware, which permits a reload.

The RTPRO firmware, while waiting for download, performs an SCP test routine
permitting the operator to perform confidence tests on the switches, thumbwheels,
and INTR pushbutton. If the control switches are all LO, the LEDs are flashed on
in slow succession; any control switches placed in the HI position turn on the cor-
responding LED. When the INTR pushbutton is pressed, the mode thumbwheels setting
is logically ORed with the switches and the combination appears on the LEDs.

The RTPRO load module consists of a baseline set of routines linked to the
user's real-time routines to form a single entity loaded into the lower portion of
RTPRO RAM. The baseline routines provide the following services: LAN servicing,
channel management, DAC and CRT data acquisition, and programmable function genera-
tion. Supervision of RTPRO by CENPRO is accomplished through control structures in
a portion of RTPRO RAM that is reserved as a common data area. The interfaces to
the user's routines provide a variety of options that can accomodate a broad spec-
trum of user requirements including interrupt linkages, timed polling, and back-
ground looping.

The LAN servicing provides pipeline management for all data flowing to and from
the RDAS. At present, only a single secondary station (01) is tied to the bus,
although up to 255 addressable stations may be serviced. As discussed in appendix
A, the maximum servicing rate is approximately 96 Hz, although degradation can be
expected with high RTPRO loading. During each cycle, all 48 discretes are passed
(both ways), 16 analog-to-digital converter (ADC) values are fetched, and all 28
DACs are updated. The data are passed to and from buffers in RTPRO RAM; if a
routine requires access to the data stream for either input or output, this is
accomplished synchronously using handshake semaphores. In addition to analogs and
discretes, serial character streams to and from the RDAS peripherals can be passed
using packets attached to the LAN messages. These packets are handled as low-
priority traffic to maximize the bandwidth of the analogs and disgcretes.

Channel management involves the declaration and subsequent supervision of the
data acquisition channels, which may number up to 32. Each is identified by a
two-character mnemonic and has associated with it a control structure as shown in
table 4. The handler for each channel consists of a set of six subroutines whose
addresses are provided when the channel is declared. The baseline RTPRO software
declares four channels: PP for access to PERPRO RAM, RP for access to RTPRO RAM,

11

RA for access to RDAS analog inputs, and RD for access to RDAS discrete inputs.

All channels, including any the user requires, are declared during RTPRO initializa-
tion following download. The baseline software provides routines for the timing,
synchronization, and status monitoring of each channel.

The DAC and CRT data acquisition is managed using two large control structures
that contain all the information necessary to fetch the data items called for and
perform raw data preprocessing. Up to 16 recorder output DAC parameters may be
handled, and up to 255 CRT display parameters may be handled. The DAC control
structure is scanned at a maximum rate of 100 Hz, although rate degradation is nor-
mal depending on RTPRO loading. The CRT control structure is scanned at the screen
refresh rate selected by the operator (0.67 Hz to 10.0 Hz). The control structures
contain a block of the type shown in table 5 for each parameter, These blocks pro-
vide registers for data buffering, constants used in preprocessing, and pointers to
the necessary supporting subroutines. As soon as the DAC control structure scan is
complete, the DAC values are copied from the structure to the DAC buffer, and the
16 DAC outputs are immediately updated. For the CRT control structure, CENPRO is
notified when scan is complete, and CENPRO then fetches from the structure whatever
data elements are required to support its screen display formatting.

For both DAC and CRT data acquisition, the subroutines called to perform the
data snapshot (copying data from the channel handler) and subsequent processing are
embodied in software modules called raw data type handlers. Each data type is iden-
tified by a four-character mnemonic and has an associated declaration structure as
shown in table 6. The two setup routines are used in the configuration of the CRT
and DAC control structures. These routines are responsible for generating the con-
stants embedded in each control block and also for supplying the pointers for the
snapshot and processing routines. Up to 64 total raw data types may be declared at
initialization time; currently the baseline software declares the 7 types shown in
footnote a of table 6. The algorithms employed in the processing routines for these
7 data types are shown in appendix C.

The programmable function generator contained within the baseline RTPRO software
permits up to 100 time-varying functions to be generated. The outputs are used to
selectively drive RDAS analog and discrete outputs to provide forcing functions to a
system under test. The generator is initialized by CENPRO and is clocked by eight
separate software timers triggered by the operator using the SCP. Up to 32 function
types may be declared at initialization time; currently 10 functions are declared
by the baseline software. These are sinusoidal, step, ramp, doublet, pulse, rec-
tangular periodic, triangular periodic, random discrete, shaped white noise, and
exponential. The generator is controlled by a large data structure containing
for each function a block such as that shown in table 7. When each function is
declared, a pointer is supplied for a setup routine that is responsible for ini-
tializing the block constants and pointers. The structure is scanned at a maximum
rate of 100 Hz, with slower rates to be expected for larger numbers of functions as
RTPRO loading increases. However, the timers maintain a uniform time scale even
though servicing rates may slow.

CENTRAL PROCESSOR XAIDS JOB SOFTWARE

The XAIDS executive load module consists of a baseline set of routines linked
to the user's extension modules to form a single load-time locatable RMX86 I/O job.

12

This module is loaded by the logon file during system power-up initialization; it
may be later reloaded manually using the operator human interface command XAIDS. At
its core is a looping command interpreter that accepts command mnemonics of one to
four characters in length and then branches to the corresponding servicing routine,
called a command handler. The menu is the combination of the XAIDS baseline command
set plus whatever user-defined commands have been declared. The XAIDS executive
provides an interface for the overall software suite to the RMX86 operating system
for such operations as file reading and writing. 1In addition to RMX86 I/0, the
executive baseline manages the display scratch diskette, several data display for-
mats, a symbol table, two display page handlers, a function generator, and several
test modules.,

All XAIDS commands with the exception of EXIT are declared by tables consisting
of concatenated sets of command declaration blocks such as shown in table 8. A con-
catenated set of such blocks may be of any length and is delimited by a final block
containing blanks in the mnemonic field. Associated with each declared command mne-
monic are two ASCII text strings that are used in the menu presentation process.

The first is a 20-character explanation of the mnemonic itself while the second is a
45-character description of its function. Also contained in each block is the entry
address of the command handler, the address of the scratch file save template (if
any), and the length of said template in bytes.

A template is defined as any data structure that is created by a command handler
and that can be preserved on diskette and retrieved for later reuse. All templates
contain the same initial block of 54 ASCII bytes, the first 4 bytes containing the
mnemonic for the associated command handler and the next 50 bytes containing the
identifying name for the template. Diskette drive :F3: is reserved for the scratch
diskette, which may contain up to 100 numbered files each containing one template.
An additional file on the diskette is the so-called scratch diskette directory (not
to be confused with the diskette's operating system directory), structured as shown
in table 9. The scratch diskette manager has routines for viewing the directory,
loading a file, dumping of file groups to printer, deleting a file, copying a file
to a backup scratch diskette, and initializing a new scratch diskette. When a fresh
diskette is initialized to become an XAIDS scratch diskette, its newly created
(empty) directory is given a name, and the date and time of creation is permanently
recorded. This directory contains 100 entries for the status information corre-
sponding to diskette files given pathnames 1 to 100. Each entry contains the empty-
occupied status flag, the command mnemonic of the handler associated with the tem-
plate, the date and time of the save operation, and the title for the template.

Two major PUBLIC routines within the scratch diskette manager handle the saving
of templates and the subsequent reloading of templates. The routine that saves a
template is invoked from within a command handler and either overwrites a specified
file number (1 to 100) or writes to the first available empty file if 0 is the file
number. For a typical save operation, the current scratch diskette directory is
loaded, the elected file is written, the directory is updated, and the directory is
then rewritten. The loading of a template (always specified by file number) invokes
the routine that reads the directory from the scratch diskette, determines which
handler is involved, retrieves the template, copies it to the handler's buffer, and
invokes the handler's servicing routine.

Since the main uses of XAIDS in one way or another involve the display of data,
a wide choice of screen display formats has been made available. The executive

13

manages a set of baseline and user-defined display formatting routines that are
declared during the initialization of the executive immediately after load. The
formats are declared by blocks such as that shown in table 10. Each format is iden-
tified by a single letter that has associated with it the address of the corre-
sponding servicing routine. The eight format types declared by the baseline soft-
ware are shown. With the exception of M, the letters assigned are identical to
those used in FORTRAN format statements. The M (for "message") format causes the
display of one of two alternative ASCII strings, each from 1 to 10 characters in
length. This format is widely used for displaying the status of a single discrete
or a set of discretes within a given parameter.

A central feature of the XAIDS is the use of symbolic parameter referencing
through a large structure called the symbol table. This table occupies 64 kbytes
in the uppermost portion of RTPRO RAM at bus memory domain address range OBOOOOH to
OBFFFFH. The table is alphabetized and can hold a maximum of 510 parameter entries
described by blocks such as that shown in table 11. This information is the data
base used by both RTPRO and CENPRO in the management of data flow from the channel
handlers to the ultimate destination, whether RTPRO DACs or CRT display. The symbol
table editor is a routine that manages the symbol table; it can load a new table if
required, insert, modify, delete, or clone individual entries in the currently
loaded table, attach an identifying name to the table, and store the resulting table
on diskette (usually using the default pathname :F3:SYMBOL.TAB). It also controls
the printer listing of the table in one of two formats and generates scans of the
table on the CRT.

Screen display of data is managed within CENPRO using a table of item blocks
such as that shown in table 12. Each parameter to be displayed on the screen
requires such a block; each has an index number identifying which element of the
RTPRO CRT data acquisition structure is used as the data source. Also specified
in each block is the display format, the address of the corresponding formatting
routine, the position on the screen of the left edge of the data field, and a copy
of the zero-one messages from the ‘symbol table entry for the parameter. The zero-
one messages are used only by the M format; they are copied from the symbol table
to the structure to reduce bus traffic levels.

Two data display page handlers are provided by the baseline software. The
simplest of these is a tabular form called a make page having the template struc-
ture shown in table 13. The make page handler displays a maximum of 20 data items,
1 per line, each specified by data source channel code, parameter name, and display
format. The format for a line item is usually the default format read from the
symbol table but may be a different format in effect for this line item only. The
handler accepts whatever title is desired for the page template and can save the
template on scratch diskette for later retrieval. Besides being used for data dis-
play, this page is used to set up the recorder analog outputs. A subroutine con-
trols the mapping of the first 16 entries of any make page to the RTPRO DACs on
a one-to-one basis whenever the page is "latched" to the recorder outputs. Even
though the display is exited, the latched configuration will remain in effect until
either unlatched or relatched.

The other baseline display page handler, called the free form, has the template
structure shown in table 14. The handler for this style page permits unlimited
freedom to create a display of whatever form desired occupying screen lines 3 to 23.
The template contains an image of the static information or "background" to be

14

displayed plus data entry blocks for up to 255 entries. Notice that the data item
entry structure is slightly different from that used for the make page template
since each free form data item must be explicitly positioned. Normally the template
would contain a mix of background plus data but may contain only background {thus
generating a static display) or may contain only data items (without background).
Data items are specified by channel code plus parameter name; the format for each
data item is configurable, the title for the page can be whatever desired, and the
template can be saved on scratch diskette. One unique feature of this handler is
the means to list the data item blocks from the template on either CRT or line
printer.

Control of the programmable RDAS function generator within the RTPRO baseline
software (discussed previously) is exercised by a command handler having the tem-
plate structure shown in table 15. Each template defines a "program" specifying
up to 100 different functions capable of driving either an RDAS DAC or an RDAS dis-
crete output "channel.," Functions may individually drive a channel, may be summed
to a channel, or may be time-division multiplexed to a channel. Each function entry
specifies the desired output channel, the function name, the timer specification,
and the three elapsed times at which the function is to be enabled, triggered, and
disabled. The function name correlates to an entry in a function definition table,
a tabular data structure loaded from diskette, which specifies the function type
(for example, sine) and the arguments characterizing the function. The timer speci-
fication for each function determines which of eight timers (controlled by the SCP)
is to be used as its time base. This handler can edit the program template, give
it a title, save the program template on diskette, define new functions in the
function definition table, and cause the current program template to initialize the
RTPRO function generator control structure. Once the RTPRO generator is initialized
to run mode, it is independent of CENPRO, and the handler may be exited.

_ The function definition table is an example of a category of data structures
called ASCII editor tables. As the name implies, these tables contain only ASCII
(that is, text) information and may be employed by any command handler requiring an
auxiliary data base in addition to its template. These tables, like symbol tables,
exist as operating system files (not numbered gcratch files) and temporarily overlay
the memory block normally occupied by the symbol table. To distinguish the differ-
ent table types, all are tagged with the "owner” mnemonic. Therefore all symbol
tables are tagged SYM, and a function definition table will always be tagged RDFN.
For each type of table, there must be a default pathname permitting the automatic
reload of the correct table type as required. The generic ASCII editor routine

may be called by any command handler that "owns" an ASCII editor table to permit
loading, viewing, listing, modifying, naming, and storing of its table.

The structure of an ASCII editor table entry is shown in table 16. The assign-
ment of fields is determined by the handler owning a particular table. In the case
of RDFN's function definition table, the entry name field contains the name of the
function, information field 1 contains the function type mnemonic, and information
fields 2 to 9 are assigned to various function arguments. Any application that
requires a field to contain a numeric constant must encode it in ASCII string form
when the entry is created and later decode it when the constant is fetched. This
general-purpose structure is suitable for any auxiliary ASCII data base application
of up to 510 total entries, provided each entry can be encoded into a name and
description field of 32 characters plus 9 information fields of 10 characters each.

15

The baseline CENPRO software currently contains four test routines., An RDAS
test routine generates two-way traffic to the RDAS unit through the LAN, including
analog I/0, discretes I/0, and peripherals I/O. There is a routine used primarily
in software V/V that permits the generation of numeric constants in various formats
anywhere within the memory-mapped domain. Another routine writes to the analog
recorder outputs using various periodic waveforms as well as individually controlled
calibration test voltage levels. Finally, there is a general-purpose system monitor
routine that is similar to the MAINT firmware described earlier except that it can-
not tally the IEEE-796 bus interrupts.

XAIDS-USER INTERFACES OVERVIEW

The central philosophy adopted in the design of the XAIDS was to provide a
flexible environment that would permit a prospective user to easily configure the
system in ways that could not be anticipated. To make this possible, the inter-
faces of the baseline hardware and software to the user-supplied extensions have
been structured so as to be limited, clearly defined, and easily understood. This
approach has been so successful that the design of any XAIDS application is now a
straightforward engineering task.

The interfaces that a prospective XAIDS user must deal with can be partitioned
into the following categories: cabinet-mounted hardware, cardcage components,
cabling, and software. As might be expected, the software area involves the most
extensive interfaces and as such usually demands the largest part of the engineering
effort. These four areas will be discussed here in generic terms with emphasis on
the options open to a user.

The XAIDS cabinet hardware employs standard RETMA (Radio-Electronics-Television
Manufacturers Association) compatible mounting rails and accepts standard 19-in-wide
rack-mounted subsystems. Within the cabinet, three spaces have been reserved for
the user: a 3.5-in-high panel space above the status and control panel in the upper
left front bay, a 7.0-in-high panel space above the blower unit in the lower right
front bay, and a 8.75-in-high panel space at the bottom of the left rear bay. The
3.5-in space above the SCP will accept a unit not exceeding 12 in. in depth; the
7-in space above the blower unit will accept a unit not exceeding 8 in. in depth.
These two spaces may be utilized for user equipment or panels; spare power outlets
are provided supplying up to 360 W total. Equipment that dissipates appreciable
power should contain integral ventilation blowers. The rear panel space is reserved
for user I/O connectors, which provide a mating interface for the cabling connected
to the user's target system or systems.

The XAIDS cardcage is a 21-slot (0.75-in spacing) IEEE-796 compatible unit
having integral parallel priority resolution. Auxiliary (P2) connectors are not
installed, and if possible, the user should avoid selecting boards that require
them, Cardcage backplane power for +5, +12, and =12 V is provided, and the user is
permitted to draw up to 16 A from the +5-V feed. Nine slots are reserved for the
user board complement, six of which are wired for parallel bus priority resolution
and may thus contain bus masters. All boards must decode 20 address bits, and
memory-mapped domain bus requirements must not total more than 96 kbytes. The
I1/0-mapped domain access may be 8 or more address bits, and a minimum of 198 I1/0
addresses are available. Three backplane interrupts are reserved for the user,

16

one of which is currently configured to be generated by RTPRO, while the other two
are sensed by RTPRO. Within the stated guidelines, the user may select or build
whatever board complement is required to provide target system interfaces.

The user must provide cabling withlin the XAIDS cabinet to connect the user's
I1/0 connector panel to rack-mounted equipment (if any) as well as to cardcage
boards. While there does not need to be an interface of such cabling to the cabi-
net, there does exist a convenient interconnect point that the user may employ if
desired. The cardcage interface connector panel is mounted inside the cabinet
behind the cardcage and has 8 empty mounting holes for 25-pin connectors. This
is a convenient spot to transition from ribbon cable (coming from the cardcage) to
the pigtails going to the user I/O connector panel.

User-supplied software may fall into one of four categories: RMX86 utilities,
1/0 board programming, RTPRO resident extensions, and XAIDS executive extensions.
The user has the option of creating utility programs, which are loaded and executed
through the RMX86 human interface by simply entering the name of the file containing
the load-time locatable code. Such utilities would necessarily be stand-alone RMX86
I/0 jobs totally independent of the XAIDS executive (which in itself is a stand-
alone I/0 job). An example of such a utility would be a file processor that analyzes
data previously written while running under the XAIDS executive. Creating such util-
ities requires knowledge of RMXB86 system calls and file management techniques. The
advantage of a stand-alone utility is that it may be quite large and has unrestric-
ted access to system resources. An alternative option is to make the utility a
routine that runs under XAIDS and is accessed with a menu command. This has the
advantage of convenience by being accessible without exiting XAIDS.

With regard to user I/0 board programs, the type of board selected in each case
determines what programming options exist. If an I1/0 board does not have a large
.dual-port RAM, its program must be PROM resident and cannot be bootgtrapped. If the
board has a large dual-port RAM and employs an 8086 or 8088 central processing unit
chip, the user can bootstrap its program using the XAIDS utility BOOT. If this
option is selected, the necessary cooperative firmware module checks the byte flag
at onboard address 4, which if set causes an interrupt 0 to occur., The BOOT utility
first loads the program into the board's RAM, places the starting address in the
interrupt 0 vector location (addresses 0 to 3), and sets the flag. A user I/0 board
that does not employ either the 8086 or the 8088 can still be bootstrapped if the
user is willing to write a custom loader utility that transfers code from a non-
RMX86 diskette to the I/O board.. In this case, the load module would need to be
on 8-in diskette and would necessarily be generated on a user-supplied development
system. In general, the advantage of bootstrapping an I/O board is that its program
may be changed more easily. The advantage of PROM-resident I/O programs is that the
lengthy bootstrapping process at system power-~up is eliminated.

All baseline software used in the XAIDS is created using Intel iAPX 86/88 Family
Utilities. The user-supplied software that links to the RTPRO and XAIDS executive
baseline software must he compatible. The XAIDS system has resident software devel-
opment support for PL/M, FORTRAN, Pascal, and assembly language, thus giving the user
a choice of source language. The compiler for the high-order language "C" is also
available but is not currently installed. All baseline software is written in PLM86
and compiled using LARGE model. When a user elects to use one of the other lan-
guages, the compilation model must be compatible with PLM86 LARGE, and the source
code must be rigidly disciplined in subroutine parameter passing. The use of PLM86

17

LARGE is encouraged since it guarantees problem-free integration with the base-
line code.

After linking with the user's extensions, the RTPRO baseline software expects
to find the following routines declared PUBLIC: USERS$SINIT, USERSTIMERSO, and
USERSBACKGROUND, The first is called only once during the RTPRO initialization
sequence, the second is called every 2 msec, and the third is called at a variable
rate that depends on RTPRO loading. All three of these routines have access to the
full set of RTPRO support routines shown in appendix D. Some of these are subrou-
tines, and others are typed procedures (functions) that return a value. All are
written in PLM86; non-~-PLM86 calls to these routines are permitted, provided that
proper parameter passing is observed. The user has access to a large block of RAM
for common data area and is expected to design protocol for handshaking with user
CENPRO routines where required.

The USERSINIT routine in RTPRO provides the user an opportunity to perform ini-
tialization steps related to load module identification, raw data type handlers, and
channel handlers. The user must select a four-character ASCII identifier and write
it into the PUBLIC variable RTPROSLOADSMODULESID. This allows the user's CENPRO
software to later verify that the proper RTPRO load module has been booted. For
each raw data type that falls outside the baseline set, the user must supply a raw
data handler and declare it from USERSINIT. For each separate data input path
(usually originating from an I/O board), the user must supply a channel handler,
declare it, and decide what mode to employ in servicing it. The user has the
option of declaring a channel from USERSINIT or delaying until later and declaring
it from USERSBACKGROUND. Once declared, the servicing modes available are interrupt
driven, timed polling, and background polling. If interrupt driven, the linkage
must be set up and the interrupt level enabled.

The USERS$STIMERS$SO routine in RTPRO provides a means of performing timed polling
of channel handlers or of performing other operations at user-selected intervals of
2-msec granularity. The USER$TIMER$O routine is called with interrupts disabled
from the timer O interrupt routine and is restricted to servicing that does not
require the NDP., This routine should be as short as possible so as not to miss the
next timer O interrupt and thus cause timing distortions.

The USER$BACKGROUND routine in RTPRO is called from the looping main RTPRO pro-
gram at intervals that vary widely with RTPRO loading. It provides a means for the
user to service low-priority tasks that are triggered by handshaking flags from the
user CENPRO software. This could even include the declaration of user channel
handlers, the vectoring of interrupts, and the enabling or disabling of interrupts.
It would likely control channel handler status and guarantee that proper synchroni-
zation with baseline channel handlers was maintained.

After linking with the user's extensions, the XAIDS executive baseline soft-
ware expects to find the following declared PUBLIC: an ASCII string called
USERSNAME, two pointers called USER$SCMDSLISTSPTR and USERSTESTSLISTSPTR, and five
subroutines called USERSINIT, USERSCRTSREQUESTSACTIVATE, USERSCRTSREQUESTSRESET,
USERSDACSREQUESTSACTIVATE, and USER$DACSREQUESTSRESET. The USERSNAME string must be
16 bytes long, the 16th byte must be null, and the remaining bytes should contain
the identifying name that will be placed in the upper left corner of all displays.
The pointers provide the user a means to specify the location of the two tables of

18

commands to be placed at the top of the main menu and the test menu, respectively.
The USERSINIT routine is called once when the XAIDS executive is initialized fol-
lowing load. The remaining four routines provide the user with the means to per-
form special processing if required at the beginning and end of display operation
and at the latching and unlatching of recorder outputs. All user routines have
access to the full set of CENPRO XAIDS operator interface support routines shown
in appendix E. The names for these routines all begin with xq to distinguish them
from RMX86 routines, which begin with rq.

The USERSINIT routine in XAIDS allows the user to perform steps related to
bootstrap loading of RTPRO and the I/O channel boards, performing RTPRO handshaking
setup, declaring special display formats, initializing command handlers, and loading
the pointers specifying the location of the two command tables. When USERS$INIT is
called, it must first determine whether RTPRO is loaded with the proper locad module.
If not, the user purges the incorrect one (if required) and calls a bootstrap loader
routine that is an embedded version of the utility BOOT. Like BOOT, OFFSETSLOADER
requires two arguments: a pointer to the filename for the RTPRO load module and the
offset in 16~byte segments of the RTPRO RAM (which is 8000H). If any I/O boards
need booting, OFFSETSLOADER must be called for each. After successful I/0 board
boot, the RTPRO must be informed that the related channel handler or handlers
may now be declared. If any special I/O board initialization following boot is
required, that must be done here as well, If the user has any special display
formats, they must be declared by calling a routine called DECLARESFORMATSTYPE with
two arqgquments: the ASCII letter code and the address of the formatting routine
associated with it. All user command handlers must be initialized, and their com-
mand declaration blocks in the appropriate table must be set up., The final step
is to load the table pointers with the correct addresses.

XAIDS CONFIGURATION FOR X-29A PROJECT SUPPORT

The X-29A forward-swept-wing aircraft employs a triplex digital flight control
system using dual computers in each channel. At an early date, NASA stated a
requirement for an XAIDS unit that would be used by X~-29A project personnel both in
the simulation laboratory and in the hangar. It was intended to support control
system testing during software V/V, simulation exercises, systems integration, and
pre- and postflight testing. The desired level of support required three different
kinds of interfaces: monitoring three telemetry streams simultaneously, controlling
two pieces of GSE, and providing I/0 tie-in to the Ames-Dryden simulation labora-
tory. This section will deal with the configuration of the X-29A project's XAIDS to
meet these requirements,

Figure 6 shows an overview of the XAIDS interfaces that had to be engineered
for the X-29A project. Each channel of the aircraft's triplex flight control sys-
tem consists of two processors called the control law processor {(CLP) and the I/0
processor (IOP). The three telemetry streams are Aeronautical Radio Incorporated
(ARINC) 429B format running at 100 kbits/sec, with each IOP sending 64 32-bit
"words" every 25 msec. The GSE are called system evaluation units (SEUs), with two
being required, one to access the CLPs and the other to access the IOPs. The inter-
face to the SEUs is through full duplex RS-232C serial trunks, which communicate
with the resident firmware internal to each SEU. An SEU can perform various CLP-IOP

19

system interface bus operations, such as selectively halting or running a processor,
reading or modifying RAM, reprogramming electrically erasable programmable read-only
memory (EEPROM) chips, recomputing checksums, and examining registers. The simula-

tion laboratory interface required both analogs and discretes to be bidirectionally

transmitted through the RDAS for closed-loop simulated fault testing.

Table 17 shows the I/0 board complement required to support these interfaces.
Each I/O board handles one telemetry stream through a piggyback ARINC 429B trans-
ceiver module that is designed to mount on one of its so-called I/O expansion bus
connectors. Two of the three boards also have a second piggyback module that
provides one RS-232C interface to supplement the one on the main board. The RDAS
interface through the LAN is part of the baseline XAIDS configuration and as such
did not require any user-supplied components. Figure 7 shows the final configura-
tion of the XAIDS cardcage with the I/O board complement installed.

The cabling for the ARINC busses and RS~-232C ports uses flat ribbon cables from
the I/0 boards as far as the system interface panel behind the cardcage. Figure 8
shows the location of the X-29A connectors mounted in the right half of the system
interface panel with the mated pigtails connecting to the X-29A aircraft interface
panel at the rear of the console. Figure 9 shows the layout chosen for the aircraft
interface panel; the three ARINC busses share a single connector at the bottom.

The PL/M program written for the I/0O boards was designed to permit the boards to
operate as slaves to RTPRO rather than as bus masters. Each board has 32 kbytes of
dual-port RAM, all of which is mapped to the IEEE-796 bus memory domain creating
three contiguous blocks. Each board has the same small startup routine in PROM, and
the same program (IOP.X29A) is loaded by the bootstrap loader into the three RAMs.
This program contains servicing routines that respond to local interrupts from the
ARINC transceiver and RS-232C modules and handle the resulting data flow solely
under the direction of the RTPRO. Each board signals status to RTPRO through a com-
bination of semaphores and state variables, and thus no bus interrupts are required.

The RTPRO software extensions required for the X-29A system include six channel
handlers, six raw data type handlers, and one rather large background task called
X29ASSIM, which locally computes anticipated control law gains. The status and
control panel is not used, and no interrupts are serviced. The software was written
using FORTRAN for the X29A$SIM package and PL/M for everything else. A large block
of RTPRO RAM is devoted to hard-mapping the FORTRAN COMMON blocks for X29AS$SIM so
that CENPRO can display the common variables, The USERSINIT routine declares three
channels (H1, H2, and H3), declares six raw data types (HSP, HDP, HFLT, HHEX, HINT,
and HBOO), and loads the identifier X29A into RTPROSLOADSMODULESNAME. The three
channels access buffers within RTPRO RAM that contain control system data fetched
through the SEUs. The six raw data type handlers provide conversion of the proc-
essor data types, single precision, double precision, floating point, hexadecimal,
integer, and boolean, to NDP-compatible types. The algorithms employed in these
data handlers are summarized in appendix C. The USER$BACKGROUND routine checks on
I1/0 board status and waits until bootstrap load is complete before declaring the
corresponding ARINC channel handler (A1, A2, or A3). It also invokes the execution
of X29ASSIM when so directed by CENPRO and manages the status keeping for any ARINC
channels that happen to be idle. The USERS$TIMERS$O routine polls the three I/O
boards (every 2 msec) to see if a fresh ARINC data buffer load is ready. As the
active channels show ready, an elapsed timer is checked so that only data frames

20

coincident within an 8-msec window are accepted. If proper synchronization is
sensed, it calls the routine named SYNCH, which in turn triggers the copying of
whatever data are required from the I/O board buffers to the data acquisition
control structures.

The CENPRO software extensions required for the X~-29A application include the
USERSINIT routine, seven main menu command handlers, two test menu command handlers,
and a USERSCRTSREQUESTSACTIVATE routine. No custom data display formats are
declared. The USERSINIT routine loads the I/0 boards with the file IOP.X29a, sets
the default baud rate (2400) on the four SEU trunks, and loads the RTPRO with the
file RTPRO.X29A. It then initializes the nine command handlers and sets up the com-
mand list pointers. The seven main menu commands are QT, RU, SEU1, SEU2, PTCH,
PMSW, and GAIN. The two test menu commands are ARNC and BAUD.

OPERATION OF THE X~-29A XAIDS

The XAIDS unit constructed for the X-29A project went into service in January
1984 and by October 1986 had accumulated over 3600 hr of operation in the Ames-
Dryden real-time simulation laboratory. During this period the unit was used
for diverse support including software V/V, closed-loop simulation testing, and
pilot training. This section gives an overview of XAIDS operator procedures and
presents sample printer hard copies of displays made during actual operations.

The XAIDS firmware and software load modules were configured to totally elimi-
nate any need for operator interaction during bootstrap and initialization following
power-up. The operator need only turn on the RDAS power switch, then turn on the
XAIDS power switch, and wait approximately 1 min until the XAIDS main menu appears
_on the CRT screen, During this waiting period, several messages appear on the
screen that give the operator the status of the ongoing bootstrap and initialization
stages. The first message to appear is the RESET mode sign-on generated by PERPRO
to signal its readiness to accept communications from CENPRO. Meanwhile the RMX86
operating system is being loaded, and approximately 30 sec later the RMX86 basic
1/0 system (BIOS) switches PERPRO to RMX86 mode, thus telling the operator that the
operating system is running. Following this, the operating system submits the logon
file for execution. The next message to appear is generated by the utility RBOOT as
it performs the RDAS bootstrap; if RDAS is not connected or not powered up, RBOOT
aborts with an appropriate message. The final stage of the initialization process
is when the logon file invokes the command XAIDS, which begins the loading of the
XAIDS executive.

The XAIDS executive loaded into CENPRO by the human interface is classified as
an RMX86 "I/O job" and consists of the executive baseline linked to the X-29A exten-
sions. When the load cycle is complete, the executive takes control of the system,
switches PERPRO to XAIDS mode, and activates the operator's keyboard. From this
point on the operator has the option of aborting the XAIDS executive initialization
and returning to RMX86 mode by pressing the <esc> key. The executive next calls the
X-29A USERSINIT routine, which controls the boot of the I/O boards and RTPRO. The
following messages appear on the screen (in bottom to top scroll fashion) during the
execution of USERSINIT:

21

SLAVE PROCESSOR LOADER ROUTINE

PATHNAME : :sd:user/1/1op.x29%

SEGMENT = €800

LHEADER : X29A_I0P_MAIN P86 -

MODEND TYPE 3 T MATN MODULE WITH START ADDRESS

= 0040 : 0006
TOTALS : [IGNORED = 108 PEDATA = 82 PIDATA =0

SETTING UP DEFAULT SEU #1 BAUD RATES
TERMINAL BAUD RATE = 2400 MODEM BAUD RATE = 2400

SLAVE PROCESSOR LOADER ROUTINE

PATHNAME : :sd:user/l/iop.x29a

SEGMENT = D000

LHEADER : X29A_IOP MAIN P86

MODEND TYPE 3 T MATN MODULE WITH START ADDRESS = 0040 :.0006
TOTALS : IGNORED = 108 PEDATA = 82 PIDATA = 0

SETTING UP DEFAULT SEU #2 BAUD RATES
TERMINAL BAUD RATE = 2400 MODEM BAUD RATE = 2400

SLAVE PROCESSOR LOADER ROUTINE

PATHNAME : :sd:user/1/iop.x29a

SEGMENT = D800

LHEADER : X29A 10P MAIN P86

MODEND TYPE 3 7 MATN MODULE WITH START ADDRESS = 0040 : 0006
TOTALS : IGNORED = 108 PEDATA = 82 PIDATA = 0

SLAVE PROCESSOR LOADER ROUTINE

PATHNAME : :sd:user/1/rtpro.x29a

SEGMENT = 8000

LHEADER : RTPRO_MAIN P86

MODEND TYPE 3 : MAIN MODULE WITH START ADDRESS = 0040 : 0006
TOTALS : [IGNORED = 155 PEDATA = 494 PIDATA = 1098

This sequence loads and initializes the four slave processors in the following order:
IOP A, IOP B, IOP C, and finally RTPRO. The executive then loads the symbol table
from the scratch diskette in drive :F3: and finally enters the command interpreter.

Beginning at the time the XAIDS executive first enters the command interpreter,
the operator may at any time request PERPRO to perform a snapshot of the screen
display and provide a hard copy on the line printer. These hard copies are true
single-frame snapshots and are requested using the keyboard entry <cntl P>. BAnother
keyboard command recognized by PERPRO is <cntl U>, which signals a request to change
the screen refresh update period (initially defaulted to 0.5 sec). The next key-
stroke is then interpreted as the desired period in deciseconds and must be one
of the set 1,2,3,4,5,6,7,8,9,A,B,C,D,E,F covering the range from 0.1 to 1.5 sec.
These commands are recognized by PERPRO only while in XAIDS mode; in RMX86 mode
all keystrokes are passed to the RMX86 BIOS without prior PERPRO interpretation.

The command interpreter main menu display shown in display 1 (screen displays
follow the figures at the end of this report) is the first formatted page display
presented by the executive and is the last one seen when returning to RMX86 using
the command EXIT. If the command TEST is entered, the subsidiary menu shown in
display 2 is displayed. On the main menu, the first seven commands are X~29A exten-
sions; on the test menu, the first two commands are X-29A extensions. These two
command menus provide first-level access to the complete spectrum of XAIDS execu-
tive functions.

22

The first step normally required of the operator is to command the three con-
trol system computers to RUN state using command RU. Display 3 shows the display
generated by this package as it verifies the links to the SEUs, selects all three
channels, displays the checksums, and finally sends the SEU command RU to place the
three channels in RUN mode. The sequence is performed twice since separate SEUs
control the CLPs and IOPs, and both sets must be placed in RUN mode. A companion
XAIDS command is QT, which performs the shutdown sequence shown in display 4,
Notice the difference in the order of the operations performed since the computers
must first be halted using the SEU command QT before the checksums can be fetched.
If either package cannot communicate with either SEU, the software hangs while
waiting for SEU response, and the operator must enter <esc> to terminate. The <esc>
key is universally recognized by all XAIDS command handlers as an abort request;
pressing the <esc> key enough times will return the operator from even the deepest
level of a command handler to the main menu display.

The main menu commands SEU1 and SEU2 invoke handlers that allow the operator
access to the respective SEU using the XAIDS terminal in emulator mode. In this
mode, keystrokes are echoed to the CRT and sent to the SEU one at a time, and the
response character stream received back from the SEU is written to the CRT. XAIDS
responds to <esc> by terminating the emulation and returning to the main menu.
while an SEU terminal emulator is being used, the <cntl P> command is functional,
and hard copies may be made at any time.

During X-29A control system testing, it is frequently necessary to make minor
program changes to set up special test conditions. One of the most common types of
change is to the tables controlling the parameters being transmitted by the IOPs
through the ARINC trunks, so that parameters may be viewed that are not normally
accessible. Such program changes are called patches, and the patch manager (PTCH)
permits creation, storage, retrieval, modification, and transmission of patch tables.
Display 5 shows the PTCH handler menu and the status of the table currently occu-
pying the PTCH template. A patch table may be up to 100 entries long and is edited
using a display such as that shown in display 6. Each entry specifies the address
and new contents for a single 16-~bit memory word that may map to either RAM or
EEPROM. When the SEND command is entered, the operator is queried as to which com-
puters (either IOP or CLP) and what subset (any desired set of 1, 2, or 3) are to
receive the patch table. The appropriate SEU is selected, the specified set or
subset of processors is selected, those processors are halted, the table is trans-
mitted, and new checksums are generated and displayed.

The main menu command PMSW (postmortem switch) permits the operator to control
whether stale data from the ARINC trunks can be displayed. Normally, the XAIDS
places blanks in the data field of any parameter whose source channel is not being
serviced for any reason. If one channel of the X-29A control system fails, the
ARINC stream from its IOP is no longer transmitted, and the fail-safe timer in the
respective channel handler in RTPRO times out and declares the channel failed.
However, there are tests where it is necessary to override this blanking feature so
that data may be displayed from the last complete frame received before the channel
went dead., If the postmortem switch is set, stale data will be dispiayed on free
form and make page displays, but the routine USERSCRTSREQUESTSACTIVATE will write a
cautionary message on the bottom line of the CRT.

The X-29A aircraft employs a control system that dynamically adjusts flight
control system gains as a function of flight condition. The X-29A-configured RTPRO

23

load module contains a set of equations that for comparison can compute the gains
anticipated for any flight condition. The command GAIN accesses the display shown
in display 7, which presents the contents of the current GAIN template. Display 8
shows the page displayed if H (help) is entered, summarizing the single-keystroke
commands available. The operator may specify the value for each of 16 flight con-
dition parameters using M (modify), give the table a name using T (title), and save
the resulting table using S (save). When C (compute) is entered, the initial values
are sent to RTPRO and the X29A$SIM package is iterated once, computing a full set of
predicted gains. If the flight control system processors have previously been prop-
erly patched, these same initial conditions may then be overlayed to the processors
using the I (initialize) command. The operator must then manually cycle the com-
puters to RUN state for approximately 5 sec to allow the flight program to compute
its gains. The operator then enters W (wrap up) to synchronously halt the proc-
essors and read the gains back into XAIDS through the SEUs. The XAIDS-computed

and X-29A-computed gains are compared, and the results may be displayed using an
operator-created make-page (MP) or free~form (FF) format.

The main menu load display command LD followed by a file number loads the tem-
plate from the designated scratch file on drive :F3: and starts execution of the
command handler associated with it. Display 9 shows the screen display resulting
from the command entry LD 45 <return> . File 45 happened to contain the template
for an MP display used for failure modes and effects testing of the angle-of-attack
vane. Following the LD operation, this display will remain on the screen in
refreshed mode until the operator enters either <esc> or <return>. If <esc)> is
entered, the display terminates, and control reverts back to the main menu. If
<return> is pressed, the MP setup mode is entered, giving the operator access to a
command list with means to modify, name, and save the page on scratch file. If H
(help) is entered, display 10 appears giving an explanation of the MP command list.
Note that MP not only displays data on the screen but is the means whereby recorder
analog outputs are controlled. The MP template (like all templates) is retained
indefinitely either until modified by its command handler or until overlaid by an LD
coperation that fetches another like template. Whenever the command MP is entered
from the main menu, the MP command handler activates a display based on the current
contents of the MP template,

Display 11 shows the page displayed by the command sequence LD 56 <returnp.
File 56 happened to contain a template for a free-form page created to display the
strake positions and strake actuator commands from all three channels. Like MP, the
display remains live until either <esc> returns control to the main menu or <return>
forces the handler into the setup mode. Display 12 shows the FF setup page, which
displays the static background plus the fields occupied by data items as bracketed
zones. Eight single-keystroke commands are available; if H (help) is pressed, the
page shown in display 13 is displayed. Since data items are not explicitly identi-
fied on the FF page except in background, the operator requires means to verify
which data items are being requested. The L (list) command permits the operator to
display the data item blocks from the current FF template on either the CRT screen
or the line printer. Display 14 shows the data item list on CRT for the FF display
loaded from file 56. If FF is entered from the main menu, the FF handler creates a
live display based on the current contents of the FF template.

When the main menu command DK is entered, the page shown in display 15 appears

with the DK command list and the floppy diskette drive or drives accessible by each.
The diskette manager permits the operator to initialize a scratch diskette, delete a

24

file, view the directory on CRT, dump the directory to line printer, copy files from
one scratch diskette to another, and sequentially load a group of files and produce
a hard copy of the resulting displays on the line printer. An XAIDS scratch diskette
is an 8-in single-sided double-density diskette that has been first formatted as a
NAMED volume using the RMX86 human interface command FORMAT and then initialized
using the DK command INIT. A scratch diskette is used to save MP templates, FF
templates, PTCH tables, GAIN tables, and RDFN programs as numbered files using SAVE
commands from within the respective command handlers. All scratch diskettes also
have an additional file named DISPLAYFILES (created by the DK command INIT), which
serves as the directory used by the DK command handler and by the LD command to
access the numbered files. When viewing the directory for a scratch diskette on
CRT, a display such as display 16 is created, For each of 100 numbered files, the
directory contains an entry showing the time and date of creation, the owner mne-
monic, and the title. The operator is able to scroll through the directory viewing
the entries (in groups of 10) for all nonempty files until the desired information
is found.

When the main menu command SYM is entered, the symbol table manager display
shown in display 17 appears. This page displays the identifying information taken
from the header of the currently loaded table and presents the SYM command list with
a description of the function of each command. To make any changes to the individ-
ual symbol entries in the table, the operator must enter EDIT to access the page
shown in display 18. This page allows the operator to find a specific entry or to
scroll through the entire table alphabetically, and it permits the following types
of changes to be made: addition of a new entry, deletion of an existing entry,
modification to an existing entry, and cloning a new entry from an existing entry.
After the needed changes are made, the operator must press <esc> to return to the
SYM command list to save the new or revised table on diskette.

The main menu command RDFN accesses the handler for the RDAS function generator,
which in turn controls the companion software embedded in RTPRO. This package is
designed to permit both analog and discrete excitation functions to be fed through
RDAS to the simulation laboratory interface with the X-29A control system. This
mode of operation of the XAIDS has not yet been exercised, and results will be pre-
sented in a separate report. '

Wwhen TEST is entered from the main menu, the additional five commands on the
test menu (display 2) are made available to the operator. 1f BAUD is then entered,
the display shown in display 19 appears. This handler provides direct access to the
RS-232C transceivers on the three IOP boards and permits baud rate changes and the
sending and receiving of test messages. Display 19 shows the messages generated as
the operator changes the baud rate of IOP A port 1 from its default value of 2400 to
4800 (the snapshot was taken before the final <return>). Such a baud rate change
would be made only if the terminal port on SEU 1 had also been changed to 4800 baud.
The commands S (send) and R (receive) are hardware troubleshooting commands used
only with the SEU trunks disconnected and wrap-back jumpers installed; in this con-
figuration the transmitter outputs back to receiver inputs.

The ARNC command on the test menu provides hardware troubleshooting functions
for the ARINC transceivers on the three IOPs. Such testing first requires dis-
connecting the trunks coming from the X-29A control system so that wrap-back jum=-
pers may be installed. The handler allows test messages to be transmitted from one
board and received and verified on another.

25

The RDAS command on the test menu permits hardware diagnostic and calibration
tests on the RDAS rack through the LAN, and it indirectly provides confidence
testing of the LAN itself. Input-output tests may be performed on the analogs,
discretes, and the two serial ports in either open-loop or closed~loop mode. Test
messages may be sent to the line printer port, and the status of the LAN activity
counters may be displayed.

The CON command on the test menu permits the operator to generate numeric con-
8tants in various formats at any memory domain address desired. This command is
used only during XAIDS software V/V,

When CAL is entered from the test menu the display shown in display 20 appears.
This handler allows the operator to perform various tests on the analog recorder
output DACs on RTPRO. The AUTO and SAW commands generate continuous waveforms on
all 16 DAC channels, while MAN generates a manually stepped multilevel output on all
16 DACs. The SEL command permits the operator to select one of the 16 DAC channels
and set it to any desired level for calibration. Display 20 shows the response if
the operator wishes to set "pen" 1 to 2.5 V (the hard copy was taken before the
final <return>). Entering TEST commands RTPRO to trigger the confidence test firm-
ware in the DAC modules and report the status, thus verifying that the DAC modules
are responding properly.

GUIDE FOR THE PROSPECTIVE XAIDS OWNER

A decision to commit to the use of an XAIDS in support of a project requires
analysis of the cost of ownership and the expected benefits. . This analysis must
consider both the initial cost and the long-term overhead of supporting such a
system. Based on experience to date with the XAIDS at Ames-Dryden, the following
guidelines are offered to help the prospective user more accurately predict costs.

Initial hardware cost (excluding software) for an XAIDS console configured for
the X-29A application is estimated at $100,000, which includes the cost of assembly.
For the RDAS, the figure is approximately $25,000. The cost of spare parts is inde-
terminate since each user must decide what level of parts backup is required based
on project tolerance to outages. In general, failure rates have been extremely low,
with most maintenance problems relating to dirty connectors and conducted electro-
magnetic interference. Only one major failure has been experienced to date; the
failure occurred in the XAIDS cardcage power supply and was caused by an inadvertant
momentary short circuit on one of its outputs.

Hardware cost for the XAIDS console can be reduced slightly without impact on
the baseline software. If the user has no requirement for an RDAS and no other LAN
interfaces are involved, the LAN controller board can be deleted from the baseline
board complement. All related software has been designed to be tolerant of LAN
failures, and thus the deletion has no impact other than loss of LAN communications,
Another optional deletion is the MAINT board, although this step should not be taken
lightly. The maintenance processor has proved invaluable for hardware integration
and XAIDS software V/V and is considered a wise investment. Any other departures
from baseline will impact either the configuration of the operating system or the
XAIDS baseline software, or both. 1In this case, the additional cost of software
reengineering will probably exceed any reduction in hardware investment.

26

2 hardware cost that is more difficult to estimate is the infrastructure
required to support software and firmware., There are several strategies available,
and much depends on whether the user already has on hand equipment that could host
Intel support software. Both 8-bit and 16-bit support are required, and hardware
must be available for programming a wide variety of PROMs. At Ames-Dryden an Intel
Series III microcomputer development system (MDS) with 512K of RAM was already on
hand, carried over from the earlier AIDS development. To this MDS was added a new
PROM programmer and a 35-megabyte hard disk subsystem. 1In addition, it was decided
to interface the MDS to an XAIDS brassboard configured to the baseline board com-
plement, costing about $70,000. The interface being used is the Intel SBC957B,
which provides file format conversion from MDS ISIS-II format to brassboard RMX86
format. This assemblage of support equipment is intended to be shared among all
XAIDS users at Ames-Dryden and is highly cost effective.

The combination of a brassboard interfaced to a MDS has been highly productive
and is strongly recommended as the best approach for software and firmware support.
It provides a total support environment including 8-bit support for the PERPRO and
RDAS in a totally independent facility, freeing the XAIDS console for full-time
project support. However, for users who envision no need for 8-bit support, there
is a minimum-cost strategy that would permit the XAIDS console itself to be used in
the support role on a part-time basis. This would require the addition of an
SBX351 multimodule to CENPRO to provide a serial RS232 interface to an external
user-supplied PROM programmer. The programmer selected must have the necessary
serial port and be able to accept PROM files in hexadecimal format through a user-
written RMX86 utility. The additional hardware cost for the SBX351 and the PROM
programmer should be under $4000.

The cost of purchased software depends upon the user's final choice of support
strategy. For the Ames-Dryden environment, a wide spectrum of available support
software has been incorporated. For the XAIDS brassboard, the cost is less then
$20,000, including the RMX86 operating system, utilities, assembler, screen editor,
and compilers for Pascal, FORTRAN, and PL/M. No additional cost is incurred for the
RMX86 incorporation in the XAIDS console. For the MDS support of both 8-bit and
16-bit microprocessors, the cost is also less than $20,000, including screen editor,
utilities, assemblers, and compilers for FORTRAN and PL/M.

Software engineering costs for user-specific modules is very much a function of
the application; for the X-29A-configured XAIDS, approximately two man-years total
development effort was expended. A facet of software engineering cost that needs to
be taken into account is the V/V and certification of user modules as they are added
to the system. At Ames-Dryden each increment of user software is incorporated into
separate test modules kept apart from the normally booted system. wWhen time is
available, the XAIDS is rebooted with the new modules, and V/V testing is performed
to a test plan developed jointly by the project engineer (the user) and the software
engineer who prepared the update. If all tests are successfully passed, the updated
modules are made available to the project team on a trial basis, in that either the
old or the new versions may be used. Following a minimum of 10 hr operational use
on the new version without errors, the new version is upgraded to normal boot. At
least one previous version is kept on the hard disk drive in case it should ever be
necessary to step back to an earlier version.

The cost effectiveness of the XAIDS, like that of its predecessor AIDS, has
been amply demonstrated in spite of the hardware and software costs discussed above,

27

One component of the payback is the project time saved through productivity gains
afforded by its high throughput, simplification of operator procedures, and poten-
tial for automatic testing. Another cost saving results from the elimination of
extra equipment, made possible by its flexibility in assuming multiple roles. An
indirect payback is the lowering of operator stress resulting from centralization of
diverse functions at a user~-friendly workstation. Many past and present users have
declared this type of support system to be indispensable.,

FUTURE XAIDS DEVELOPMENTS

As the X-29A XAIDS system loading has increased with the steady addition of more
user software to provide new services, it was inevitable that a need for increased
bandwidth would arise. Two goals for increased performance are being approached:
(1) reducing bus loading to lower waiting times and (2) increasing processor speeds.
Accomplishing the first goal will require combining the functions of the central
processor, auxiliary RAM board, and auxiliary PROM board into a single SBC86/35
processor board having 512K of RAM and 128K of PROM. This will provide a self-
contained environment for the RMX86 operating system without the need for bus cycles
for instruction fetches. The second goal will be easily accomplished for the CENPRO
and RTPRO by upgrading the current 5-MHz 8087 NDP chips to the 8-MHz version, thus
immediately achieving a 60-percent increase in throughput. No speed improvement for
the PERPRO or MAINT are judged as necessary.

A major upgrade to the XAIDS is planned for the next unit to be built. Two
areas of enhancement are now being engineered: (1) addition of a second cardcage
and (2) redesign of the hard disk and floppy diskette subsystems. To give future
users additional board slots for user I/O channel boards, a second 21-slot cardcage
is planned, with a much larger power supply. The two cardcages will be tied together
with a pair of commercially available bus extender boards, one board plugged into
each cardcage and linked by ribbon cable. This will result in one cardcage being
available for slave boards only (not bus masters), while the other cardcage will be
configured basically as shown in this report.

The hard disk and floppy diskette subsystems will be consolidated into a single
chassis controlled by a single controller board. The current single 19-megabyte
hard disk drive will be replaced by two 25-megabyte hard disk drives, and the 8~-in
floppy diskette drives will be replaced by 5.25-in drives. 1In addition, a 0.25-in
streaming tape (cartridge) drive will be added to provide a backup capability for
saving the contents of the hard disk drives. The entire complement will be inter-
faced to a single SBC214 controller board.

With regard to the RDAS, several enhancements are being considered for incorpo-
ration into future units. One is to use a larger cardcage and power supply to
permit the user to install more I/0 boards. A second improvement would be to use a
16-bit processor board as local controller instead of the present 8-bit board. A
third major change would be to upgrade the RDAS-XAIDS link to the higher speed
10-MHz Ethernet (XEROX Corporation). This link would provide a 10-fold increase in
bandwidth and would dramatically lower transport lag. In addition, having Ethernet
capability on XAIDS would permit it to be interfaced to a wide range of networks
now in operation.

28

A hardware cost that is more difficult to estimate is the infrastructure
required to support software and firmware. There are several strategies available,
and much depends on whether the user already has on hand equipment that could host
Intel support software. Both 8-bit and 16-bit support are required, and hardware
must be available for programming a wide variety of PROMs. At Ames-Dryden an Intel
Series III microcomputer development system (MDS) with 512K of RAM was already on
hand, carried over from the earlier AIDS development. To this MDS was added a new
PROM programmer and a 35-megabyte hard disk subsystem. In addition, it was decided
to interface the MDS to an XAIDS brassboard configured to the baseline board com-
plement, costing about $70,000. The interface being used is the Intel SBC957B,
which provides file format conversion from MDS ISIS-II format to brassboard RMX86
format. This assemblage of support equipment is intended to be shared among all
XAIDS users at Ames-Dryden and is highly cost effective.

The combination of a brassboard interfaced to a MDS has been highly productive
and is strongly recommended as the best approach for software and firmware support.
It provides a total support environment including 8-bit support for the PERPRO and
RDAS in a totally independent facility, freeing the XAIDS console for full-time
project support. However, for users who envision no need for 8-bit support, there
is a minimum-cost strategy that would permit the XAIDS console itself to be used in
the support role on a part-time basis. This would require the addition of an
SBX351 multimodule to CENPRO to provide a serial RS232 interface to an external
user-supplied PROM programmer. The programmer selected must have the necessary
serial port and be able to accept PROM files in hexadecimal format through a user-
written RMX86 utility. The additional hardware cost for the SBX351 and the PROM
programmer should be under $4000.

The cost of purchased software depends upon the user's final choice of support
strategy. For the Ames-Dryden environment, a wide spectrum of available support
software has been incorporated. For the XAIDS brassboard, the cost is less then
$20,000, including the RMX86 operating system, utilities, assembler, screen editor,
and compilers for Pascal, FORTRAN, and PL/M. No additional cost is incurred for the
RMX86 incorporation in the XAIDS console. For the MDS support of both 8-bit and
16-bit microprocessors, the cost is also less than $20,000, including screen editor,
utilities, assemblers, and compilers for FORTRAN and PL/M.

Software engineering costs for user-specific modules is very much a function of
the application; for the X-29A-configured XAIDS, approximately two man-years total
development effort was expended. A facet of software engineering cost that needs to
be taken into account is the V/V and certification of user modules as they are added
to the system. At Ames-Dryden each increment of user software is incorporated into
separate test modules kept apart from the normally booted system. When time is
available, the XAIDS is rebooted with the new modules, and V/V testing is performed
to a test plan developed jointly by the project engineer (the user) and the software
engineer who prepared the update. If all tests are successfully passed, the updated
modules are made available to the project team on a trial basis, in that either the
old or the new versions may be used. Following a minimum of 10 hr operational use
on the new version without errors, the new version is upgraded to normal boot. At
least one previous version is kept on the hard disk drive in case it should ever be
necessary to step back to an earlier version.

The cost effectiveness of the XAIDS, like that of its predecessor AIDS, has
been amply demonstrated in spite of the hardware and software costs discussed above,

27

One component of the payback is the project time saved through productivity gains
afforded by its high throughput, simplification of operator procedures, and poten-
tial for automatic testing. Another cost saving results from the elimination of
extra equipment, made possible by its flexibility in assuming multiple roles. An
indirect payback is the lowering of operator stress resulting from centralization of
diverse functions at a user-friendly workstation, Many past and present users have
declared this type of support system to be indispensable.

FUTURE XAIDS DEVELOPMENTS

As the X-29A XAIDS system loading has increased with the steady addition of more
user software to provide new services, it was inevitable that a need for increased
bandwidth would arise. Two goals for increased performance are being approached:
(1) reducing bus loading to lower waiting times and (2) increasing processor speeds.
Accomplishing the first goal will require combining the functions of the central
processor, auxiliary RAM board, and auxiliary PROM board into a single SBC86/35
processor board having 512K of RAM and 128K of PROM. This will provide a self-
contained environment for the RMX86 operating system without the need for bus cycles
for instruction fetches. The second goal will be easily accomplished for the CENPRO
and RTPRO by upgrading the current 5-MHz 8087 NDP chips to the 8-MHz version, thus
immediately achieving a 60-percent increase in throughput. No speed improvement for
the PERPRO or MAINT are judged as necessary.

A major upgrade to the XAIDS is planned for the next unit to be built. Two
areas of enhancement are now being engineered: (1) addition of a second cardcage
and (2) redesign of the hard disk and floppy diskette subsystems. To give future
users additional board slots for user I/0O channel boards, a second 21-slot cardcage
is planned, with a much larger power supply. The two cardcages will be tied together
with a pair of commercially available bus extender boards, one board plugged into
each cardcage and linked by ribbon cable. This will result in one cardcage being
available for slave boards only (not bus masters), while the other cardcage will be
configured basically as shown in this report.

The hard disk and floppy diskette subsystems will be consolidated into a single
chassis controlled by a single controller board. The current single 19-megabyte
hard disk drive will be replaced by two 25-megabyte hard disk drives, and the 8-in
floppy diskette drives will be replaced by 5.25-in drives. 1In addition, a 0.25-in
streaming tape (cartridge) drive will be added to provide a backup capability for
saving the contents of the hard disk drives. The entire complement will be inter-
faced to a single SBC214 controller board.

With regard to the RDAS, several enhancements are being considered for incorpo-
ration into future units. One is to use a larger cardcage and power supply to
permit the user to install more I/O boards. A second improvement would be to use a
16-bit processor board as local controller instead of the present 8-bit board. A
third major change would be to upgrade the RDAS-XAIDS link to the higher speed
10-MHz Ethernet (XEROX Corporation). This link would provide a 10-fold increase in
bandwidth and would dramatically lower transport lag. In addition, having Ethernet
capability on XAIDS would permit it to be interfaced to a wide range of networks
now in operation.

28

With regard to future XAIDS users, personnel representing several projects have
expressed interest in funding the construction of a unit. The engineering of inter-
faces and development of user software will be handled on a case-by-case basis as
requirements are documented.

CONCLUDING REMARKS

A second-generation, general-purpose, user-programmable ground support equipment
has been developed and placed in service in support of the X-29A forward-swept-wing
aircraft project. The XAIDS design provides many enhancements over the earlier AIDS
mechanization, including multiple 16~bit processors, pipeline data flow architecture,
advanced operating system, resident software development tools, and remote data I/0
capability. The baseline system software suite includes a large selection of data
type handlers and display formats. User-defined extensions to this basic library
are easily incorporated. Hardware and software interfaces to user-dependent subsys-
tems have been tailored for flexibility in configuration to meet user requirements.

The major contribution of the XAIDS to the X-29A project has been the centrali-
zation of operator activites at a single workstation providing both telemetry data
analysis and flight computer test set control. Software has been developed to per-
mit operators to overlay flight computer memory with test code or data tables, or
both, to permit alteration of test conditions and remapping of the telemetry stream.
In addition, several large software modules have been incorporated to provide flight
control system performance evaluation.

As with the earlier design, the use of off-the-shelf commercial hardware and
operating system software greatly reduced the development burden and cost of owner-
ship. The increasingly wide selection of directly compatible commercial hardware
now available has made the design of user interfaces a straightforward matter of
selecting the proper components.,

The experience to date with both the XAIDS laboratory brassboard system and the
X-29A unit has been excellent over many thousand hours of operating time. Reli-
ability has been high, and users universally proclaim the system to be indispen-
sable in support of the project. Several enhancements are now being engineered
aimed at further increasing system bandwidth, and upgrades are being planned for
the next XAIDS to be constructed.

National Aeronautics and Space Administration

Ames Research Center
Dryden Flight Research Facility
Edwards, California, October 7, 1986

29

APPENDIX A — PROTOTYPE REMOTE DATA ACQUISITION SUBSYSTEM

The remote data acquisition subsystem (RDAS) (fig. 10) was engineered to be an
extension of the XAIDS that could meet two needs., Its primary intended use is to
provide a remote I/O interface to a user target system in applications where direct
cabling to the XAIDS is undesirable for reasons of wiring complexity or electro-
magnetic interference. An example of wiring complexity is a simulation interface to
an actual aircraft, iron bird, or simulation laboratory involving many discretes and
many analog parameters requiring rather large wiring bundles. ZLong distance to a
target system could require use of an RDAS to eliminate interference in noisy
environments.

An RDAS may be located up to 5000 ft from the XAIDS, with control and data flow-
ing over a LAN employing a single RG-59/U coaxial cable of 3/16-in diameter. The
XAIDS-RDAS protocol is SDLC at a 1.0-MHz rate using phase shift keying and automatic
phase-locked-loop clock extraction.

The block diagram in figure 11 shows the configuration of the prototype RDAS
constructed to support the X-29A project. The requirement was to provide a simu-
lation I/0 interface with 16 ADC inputs, 28 DAC outputs, 48 input discretes, and
48 output discretes. The solid-outline boxes in the diagram represent boards
plugged into the 12-slot cardcage, shown in figure 12. The board complement
includes an 8-bit processor, the LAN channel, seven DAC boards, one multiplexed
ADC board, and two I/0 expansion boards providing discretes I/O as well as two
RS-232 serial ports. The dashed-outline boxes in the diagram represent optional
peripherals that are not currently part of X-29A project requirements. The monitor
terminal port on the processor board interfaces to software providing maintenance
and troubleshooting utilities. The printer port is configured for Centronix paral-
lel interface protocol and may be used, for example, to provide remote duplicate
hard copy of the traffic going to the XAIDS printer. The serial ports could provide
remote operator terminal function or data I/O. All connections to the RDAS are
through the user I/O connector panel shown in figure 13.

Figure 14 shows the timing of the XAIDS-RDAS data flow, which iterates at a
maximum rate of 96 Hz. The XAIDS processing is handled by RTPRO and provides data
handling services to user modules as well as to the RA and RD channel handlers.
Each cycle, RTPRO sends a message that contains as a minimum the 48 output discretes
and the 28 DAC values. When RDAS receives this message, the discrete outputs and
DACs are serviced, and any message extensions are passed to a background servicing
task. Approximately 3 msec later, XAIDS commands RDAS to perform the data acquisi-
tion cycle for the 16 analog input values, fetch the 48 input discretes, snapshot
certain status counters, and build the reply message. If the background task has
generated any response packets, these are appended to the reply. A delay in the
XAIDS LAN controller program allows time for the foregoing to complete and then
triggers the transmission of the reply. When XAIDS receives this reply, the RTPRO
interfaces are serviced, and a new message is generated.

Table 18 shows the structure of the XAIDS to RDAS data message. The command
byte flags the message as one of two types: a data output message or a command to
perform input data acquisition. In the latter case the command is a very short
transmission consisting of just the command byte. Within a data message, a link
word of OFFFFH marks the end of the message while any other value marks the start of
a packet and points to the next link.

30

Table 19 shows the format for the RDAS to XAIDS reply message, which, in addi-
tion to the input discretes and ADC values, routinely sends the length for five
queues related to peripherals. The state flag byte will be zero if the RDAS back-
ground servicing task is idle; otherwise it is still servicing the previous set
of packets and cannot accept more. The link word in the reply has the same meaning
as above.

Servicing of the RDAS peripherals is handled in background as a low-priority task
to provide maximum bandwidth for the discretes and analogs, which must be serviced
at the full 96-Hz rate. Table 20 shows the currently implemented set of packet types
that provide the services shown. When XAIDS sends one or more packets attached to
its outgoing message, it must wait until RDAS sends back the response packets and
clears the state flag; this is to prevent overrun of the background task. The X-29a
project has not as yet generated a requirement for use of the peripheral ports, and
therefore there are normally no packets transmitted in either direction.

31

APPENDIX B — XAIDS SYSTEM INTERRUPT UTILIZATION

The XAIDS system makes extensive use of interrupts to communicate between var-
ious elements of the system. Some interrupts are generated by one board and sent
to another board through the IEEE-796 bus, which has eight paths set aside for such
signalings. Other interrupts are generated by a chip on a given board and are
simply routed to the CPU chip on that same board for processing. The processors
CENPRO, RTPRO, PERPRO, and MAINT each have an interrupt controller chip that priori-
tizes eight input interrupts and outputs a single interrupt to the CPU chip. Soft-
ware then determines which of the eight inputs caused the CPU interrupt and takes
appropriate action. 1In addition, each CPU chip has one or more “hardware inter-
rupts,” which are direct inputs bypassing the interrupt controller. For PERPRO,
there are four hardware interrupts called TRAP, A, B, and C; the other three proc-
essors have a single hardware interrupt called NMI (nonmaskable interrupt). The
eight interrupt controller chip inputs are always called IRO to IR7.

The design of an interrupt management system for XAIDS involved the allocation

of scarce resources to meet baseline system and user-defined requirements. Table 21
shows how the eight bus interrupt lines were assigned for interboard signaling.

INT3 is generated by RTPRO under user software control and may be used to signal one
or more user-supplied I/O channel boards. INT1 and INT2 are reserved for intercom-
munication between user boards as required. The five remaining bus interrupt lines
carry baseline system interrupts.

Tables 22 to 25 show how the interrupt servicing facilities are allocated on
CENPRO, RTPRO, PERPRO, and MAINT, respectively. With the exception of PERPRO, the
interrupts serviced are a mix of those generated onboard and those coming from one
or more of the bus interrupt lines specified in table 22. Although PERPRO does
generate a bus interrupt (INT5/), it does not receive any bus interrupts; it merely
services interrupts generated on board.

32

APPENDIX C — RTPRO RAW DATA PROCESSING ALGORITHMS

One of the main tasks of RTPRO is the preprocessing of raw data under the
control of two data acquisition control structures, each composed of blocks of the
type shown in table 5. Each block is 64 bytes long and consists of 16 fields of
various lengths containing an assortment of housekeeping information, data
registers, pointers to servicing routines, constants, and flags. The CRT data
acquisition structure may contain up to 255 such blocks, one for each data item
displayed on the CRT screen. The DAC data acquisition structure contains up to a
maximum of 16 such blocks, one for each DAC feeding the outputs to the recorder
channels. There is one difference in register assignment in the two applications:
the final register is used as a flag in the CRT case, while it is used as a data
register in the DAC case.

Data registers within an acquisition structure are serviced by routines accessed
using two pointers embedded in each block. The first to be called is a raw data
snapshot routine, which copies 1 to 8 bytes (based on the number of raw data fetches)
from the I/0 channel handler's buffer to the raw data register. After all blocks
in a given structure have had their data snapshots performed, a second pass is made,
and a raw data processing routine for each block is called. These routines perform
functions that vary widely, depending on the raw data type and whether the block is
part of a CRT or DAC structure. In general, the raw data undergo three transforma-
tions: a fixed-point derivative is placed in the adjusted data register, a floating-
point derivative is placed in the processed data register, and either a CRT zero
flag or a DAC offset binary value is placed in the last data register. The con-
stants KO and K1 are derived from parameters in the symbol table and are computed
only once during structure initialization.

The following algorithms are used by the seven system raw data processing routi-
nes for the CRT data acquisition structure. The steps shown for each algorithm are
listed in the order taken. Each step represents a mathematical operation performed
by one or more PLM86 language statements.

Raw data type 'ASC ' - ASCII character string
adjusted$data = raw$data
processedsdata = 0.0
zero$flag = true

Raw data type 'DISC' - Discrete
adjusted$data = (raw$data EXCL-OR xor$mask) AND and$mask
processed$data = float(adjustedsdata)
zero$flag = true if processed$data = 0.0 else false

Raw data type 'MBIN' - Masked binary

adjustedsdata = (raw$data EXCL-OR xor$mask) AND and$mask

processedS$data = float(adjusted$data) '

zero$flag = true if processed$data = 0.0 else false
Raw data type 'UBIN' - Unsigned binary

adjusted$data = raw$data

processed$data = float(adjustedsdata)

zero$flag = true if processed$data = 0.0 else false

33

Raw data type 'SBIN' - Signed binary
adjusted$data = raw$data with sign extended
processed$data = float(adjusted$data)
zero$flag = true if processed$data = 0.0 else false

Raw data type 'SFBN' - Signed fractional binary

KO = display$zero

K1 = 128.0 * (display$max-display$zero) / (256.0**nbytes)
adjusted$data = rawsdata with sign extended

processedSdata = KO + K1 * float(adjustedsdata)

adjusted$data = fix(processed$data)

zero$flag = true if processed$data = 0.0 else false

Raw data type 'IFLT' - Intel floating point
processed$data = raw$data
adjusted$data = fix(processed$data)
zero$flag = true if processed$data = 0.0 else false

The following algorithms are used by the seven system raw data processing rou-
tines for the DAC data acquisition structure.

Raw data type 'ASC ' - ASCII character string
dac$value = 8000H /* =5.000 volts */

Raw data type 'DISC' - Discrete
adjustedsdata = (rawsdata EXCL-OR xor$mask) AND and$mask
dac$value = 0000H if adjustedsdata = 0O /* 0,000 volts */
else dac$value = TFFOH /* +4.995 volts */

Raw data type 'MBIN' - Masked binary

KO = - 32768,0 * recorder$bias / recorder$scale

K1 = + 32768.0 / recorder$scale

adjustedSdata = (raw$Sdata EXCL-OR xorS$mask) AND and$mask
processed$data = KO + K1 * float(adjusted$data)

dac$value = fix(processed$data) /* see note */

Raw data type 'UBIN' -~ Unsigned binary

KO = - 32768.0 * recorderS$bias / recorder$scale

K1 = + 32768.0 / recorder$scale

processed$data = KO + K1 * float(raws$data)

dacSvalue = fix(processedsdata) /* see note */

Raw data type 'SBIN' - Signed binary

KO = - 32768.0 * recorder$bias / recorder$scale

K1 = + 32768.0 / recorder$scale

adjustedsdata = rawS$data with sign extended

processed$data = KO + K1 * float(adjustedsdata)

dac$value = fix(processed$data) /* see note */

34

Raw data type 'SFBN' -~ Signed fractional binary

KO = 32768.0 * (displayS$zero-recorder$bias) / recorderS$scale
K1 = 128.0 * (display$max-display$zero) / (256.0**nbytes)
* 32768.0 / recorder$scale
adjustedsdata = raw$data with sign extended
processed$data = KO + K1 * float(adjustedsdata)
dacs$value = fix(processedsdata) /* see note */

Raw data type 'IFLT' -~ Intel floating point

KO = - 32768.0 * recorderS$bias / recorder$scale

K1 = 4+ 32768,0 / recorder$scale

processed$data = KO + K1 * raw$data

dacS$value = fix(processeds$data) /* see note */

Note: Prior to conversion to fixed point, processed data are range
limited to -32768.0 < processed$data € +32767.0. This
range limits the DAC value to -5,000 V to +4.995 V,

The following algorithms are used by the six X-29A raw data processing routines
for the CRT data acquisition structure.

Raw data type 'HBOO' - HDP-5301 Boolean (16 to 64 bits)
adjustedSdata = (rawSdata EXCL-OR xor$mask) AND andS$mask
processed$data = float(adjusteds$data)
zeroS$flag = true if processed$data = 0.0 else false

Raw data type 'HHEX' - HDP-5301 Hexadecimal (16 to 64 bits)
adjusted$data = raw$data
processed$data = float(adjusted$data)

zero$flag = true if processed$data = 0.0 else false
Raw data type 'HINT' - HDP-5301 Integer (16 to 64 bits)

adjusteds$data = raw$data with sign extended

processedsdata = float(adjusted$data)

zero$flag = true if processedS$data = 0.0 else false
Raw data type 'HSP ' - HDP-5301 Single Precision (16 bits)

KO = display$zero

K1 = (displaySmax-display$zero) / 32768.0

processed$data = KO + K1 * float(rawSdata)
adjustedsdata = fix(processed$data)

zeroS$flag = true if processed$data = 0.0 else false
Raw data type 'HDP ' - HDP-5301 Double Precision (32 bits)

KO = display$zero

K1 (display$max~-displayS$zero) / 2147483648.0

processedsdata = KO + K1 * float(raw$data)
adjustedsdata = fix(processed$data)
zeroSflag true if processed$data = 0.0 else false

Raw data type 'HFLT' - HDP-5301 Floating Point (48 bit)
processed$data = raw$data converted to Intel floating point format
adjusted$data = fix(processed$data)
zero$flag = true if processedS$Sdata = 0.0 else false

35

for

36

The following algorithms are used by the six X-29A raw data processing routines
the DAC data acquisitions structure.

HDP-5301 Boolean (16 to 64 bits)

(rawsdata EXCL-OR xor$mask) AND andSmask

O000OH if adjusted$data = 0 /* 0.000 volts */
7FFOH /* +4.995 volts */

Raw data type 'HBOO'
adjustedSdata
dacSvalue
else dac$value

Raw data type 'HHEX' - HDP-5301 Hexadecimal (16 to 64 bits)
KO = - 32768.0 * recorder$bhias / recorder$scale
K1 + 32768.0 / recorderS$scale
processed$data = KO + K1 * float(raw$data)
dac$value = fix(processedsdata) /* see note */

Raw data type 'HINT' - HDP-5301 Integer (16 to 64 bits)
KO = - 32768.0 * recorder$bias / recorderSscale

K1 = + 32768.0 / recorderS$scale

raw$data = raw$data with sign extended

processed$data = KO + K1 * float(raw$data)

dac$value = fix(processed$data) /* see note */

Raw data type 'HSP ' - HDP-5301 Single Precision (16 bits)
KO = 32768.0 * (display$zero-recorder$bias) / recorderS$scale

K1 = (display$max-display$zero) / recorderSscale
processedsdata = KO + K1 * float(raw$data)
dacS$value = fix(processeds$data) /* see note */

Raw data type 'HDP ' - HDP-5301 Double Precision (32 bits)

KO = 32768.0 * (display$zero-recorders$bias) / recorder$scale
K1 = (display$max-display$zero) / 65536.0 / recorder$scale
processed$data = KO + K1 * float(rawSdata)

dac$value = fix(processed$data) /* see note */

Raw data type 'HFLT' - HDP-5301 Floating Point (48 bits)

KO = - 32768.0 * recorder$bias / recorder$scale

K1 = + 32768.0 / recorder$scale

processed$data = KO + K1 * (rawsdata converted to Intel floating pt.)
dac$value = fix(processedsdata) /* see note */

Note: Prior to conversion to fixed point, processed data are range
limited to -32768.0 < processed$data < +32767.0. This
range limits the DAC value to =5,000 V to +4.995 V.

APPENDIX D — RTPRO USER SUPPORT SUBROUTINES

Ssave nolist

/* Module RTPRO.EXT R. Glover 16 Oct 1984 */

/*
This module contains the PLM86 external declarations for user-
accessable RTPRO procedures. It is assumed that the user is writing
all RTPRO routines in PLM86 (large model). The user must insert the
following statement :

SINCLUDE (RTPRO.EXT)

where RTPRO.EXT is a copy of this module in the user's directory. */
/* Following five subroutines provide a means for the user to link
servicing routines to the indicated interrupts, where "ptr" is a
pointer to the entry point of the servicing routine. */
vector$timer$1: procedure (ptr) external; declare ptr pointer; end;
vector$user$A: procedure (ptr) external; declare ptr pointer; end;
vector$user$B: procedure (ptr) external; declare ptr pointer; end;
vector$Suser$C: procedure (ptr) external; declare ptr pointer; end;
vector$Sintr$pushbutton: procedure (ptr) external;
declare ptr pointer; end;
/* Following 10 subroutines provide the user with means to enable or
disable the specified RTPRO interrupt (all initially disabled). */
enableStimers$t: procedure external; end;
disableStimers$1: procedure external; end;
enable$usersa: procedure external; end;
disableS$SuserS$A: procedure external; end;
enableSusers$B: procedure external; end;
disableSuser$B: procedure external; end;
enableSuser$C: procedure external; end;
disableSusers$cC: procedure external; end;
enablesintr$pushbutton: procedure external; end;
disableSintr$pushbutton: procedure external; end;
/* Following routine allows user to control the rate at which timer 1
interrupts occur. Period is milliseconds in the range 1 to 426. */

set$timer$1Speriod: procedure (period) external;

/* Following routine allows user to set baud rate of RTPRO on-board
"baudS$rate" must be in the range 75 to 19200.

USART.

declare period word; engd;

user must poll USART since no interrupts are available., */

set$baudsrate: procedure (baudSrate) external;
declare baudSrate word; end;

Note that

37

/* Following twoc functions return byte values for the specified
Status/Control Panel registers, */

mode$thumbwheels: procedure byte external; end;
control$switches: procedure byte external; end;

/* Following three routines provide the user with means to control the
status LEDs on the Status/Control Panel. The first routine updates
all eight simultaneously where "pattern" is a byte value with the
MSB corresponding to LED #7, 1=on, and 0=off. The other two routines
allow the user to turn on or off a single LED where "led" is a byte
in the range 0 to 7 corresponding to the numbering on the panel. */

set$statusSleds: procedure (pattern) external;

declare pattern byte; end;
turnonstatus$led: procedure (led) external; declare led byte; end;
turnSoff$status$led: procedure (led) external; declare led byte; end;

/* Following three routines allow user to declare and susequently service
a user-created channel handler where "ptr" is a pointer to the
channel declaration structure. Note : user can allow "synch" to
perform "channel$ready$crt” calls automatically (see below). However,
"channel$ready$dac” calls must be made individually and are usually
made as soon as each user channel is serviced, */

declare$channel: procedure (ptr) external; declare ptr pointer; end;
channel$ready$crt: procedure (ptr) external; declare ptr pointer; end;
channel$ready$dac: procedure (ptr) external; declare ptr pointer; end;

/* Following routine allows user to inform RTPRO executive that all data

input channels are ready and CRT control structure may be serviced.
Note : "synch" calls "channel$readyS$crt" routine for each active

channel. Only those channels which have not already been serviced by
user-generated "channels$ready$crt" calls are processed. */

synch: procedure external; end;

/* Following routine allows user to declare a user-created raw data
type handler where "ptr" is a pointer to the data type declaration
structure., */

declare$datastype: procedure (ptr) external; declare ptr pointer; end;

/* Following function returns a DWORD value equal to the current master
timer interrupt counter. Can only be called from background since
this routine momentarily disables interrupts during snapshot, */

master$timer$cycle: procedure dword external; end;

Srestore

38

APPENDIX E — CENPRO USER SUPPORT SUBROUTINES

$save nolist
/* Module XQSUB.EXT R. Glover 15 October 1984 */

/* This module contains the PLM86 external declarations for CENPRO XAIDS
support subroutines. It is assumed that the user is writing CENPRO
routines in PLM86 (large model). The user must insert the following:

S$INCLUDE (XQSUB,.EXT)
where XQSUB.EXT is a copy of this module in the user's directory. */

/* Following three routines are called by XAIDS executive only. */

xqg$init: procedure (task$ptr) external;
declare task$ptr pointer; end;

xqg$setStime: procedure byte external; end;

xgSexit: procedure external; end;

/* Following three routines interface to the bus time-out (BTO) system
tied to the non-maskable (NMI) interrupt. The first two are proced-
ures which activate or deactivate the NMI rupt, while the third is a
function which returns the state of the BTO flag (clearing it after
reading it). */

xg$btoSenable: procedure external; end;

xg$btos$disable: procedure external; end;
xq$btosflag: procedure byte external; end;

/* Following seven routines perform operator keyboard input editing and
syntax checking for six types of input: any string, binary, octal,
signed decimal, hexadecimal, signed floating point, and signed float-

ing point or null string (return key only) respectively. "result$ptr"

is a pointer to a structure of the form:
declare result structure
{last$key byte, nchar byte, chars (80) byte); */

xgq$keysin: procedure (result$ptr) external;
declare result$ptr pointer; end;
xq$binkey: procedure (result$ptr) external;
declare result$ptr pointer; end;
xgSoctkey: procedure (result$ptr) external;
declare result$ptr pointer; end;
xqg$deckey: procedure (result$ptr) external;
declare result$ptr pointer; end;
xgShexkey: procedure (result$ptr) external;
declare result$ptr pointer; end;
xqSfpkey: procedure (result$ptr) external;

declare result$ptr pointer; end;
xq$fpkeySret: procedure (result$ptr) external;
declare result$ptr pointer; end;

39

/* The following true-false function specifies whether ASCII string
(delimited by blank) represents a valid floating-point constant. */

xqSvalidsfp$string: procedure (string$ptr,length) byte external;
declare string$ptr pointer, length byte; end;

/* The following routine clears the last keystroke buffer to null. */

xq$SclearSkey: procedure external; end;

/* Following five functions return the ascii byte value equivalent of a
single keystroke. The first waits for 'yY', 'y', 'N', 'n' , or <esc>
and returns 'Y', 'N', or <esc>. The second waits for 'T', 't', 'F’',
'f' , or <esc> and returns 'T', 'F', or <esc>. The third waits for
any keystroke but does not attempt to echo the keyin. The fourth
returns a snapshot of the last keystroke buffer without waiting. The
last accepts a byte argument and capitalizes if lower case letter. */

xg$yesno: procedure byte external; end;
xq$trueSfalse: procedure byte external; end;
xg$anykey: procedure byte external; end;

xgkeysnapshot: procedure byte external; end;
xqScapitalize: procedure (key) byte external; declare key byte; end;

/* Following two functions return true or false depending on last

operator key pressed. The first checks for a match to the key passed
as argument while the second checks specifically for <ESC> . *x/

xq$keystroke: procedure (key) byte external; declare key byte; end;
xg$escape: procedure byte external; end;

/* Following two functions accept a single operator keystroke only if it
is a member of a set of allowable characters contained in an array
pointed to by the argument. The first function returns the keystroke
itself after echoing it. The second function does not echo the
keystroke and returns the index to the character based on its position
in the array. */

xqScommandS$key: procedure (array$ptr) byte external;

declare array$ptr pointer; end;
xg$command$keyScase: procedure (array$ptr) byte external;
declare arraySptr pointer; end;

/* Following two routines wait for the operator to enter an acknowledge
keystroke. The first is usually used following an error condition;
a beep is first sounded and then either a <rub> or <esc> must be
entered., The second first prints the message 'WAITING FOR <esc> > '
and then will accept only an escape keystroke, */

xg$rubesc: procedure external; end;
xgq$waiting$for$esc: procedure external; end;

40

/* Following five routines provide screen blanking operations. */

xgSerase: procedure external; end; /* Erase entire screen (1-24). */
xq$purge: procedure external; end; /* Erase bottom line (24). */
xg$scrub: procedure external; end; /* Erase last write string. */

xq$flush: procedure external; end; /* Erase last operator entry. */
xg$blank$line: procedure (line$no) external; declare line$no byte; end;
' /* Erase specified line (3-23). */

/* Following moves cursor to specified row (1-24) & column (1-80). */
xg$movcur: procedure (row,col) external; declare (row,col) byte; end;
/* Following routine echoes most recent operator keystroke., */
xq$echo: procedure external; end;

/* Following routine sounds a beep on the operator terminal. */
xq$beep: procedure external; end;

/* Following two routines write a message string on the screen. The

first begins writing at current cursor position and the second begins
at specified row and column. In both cases, string$ptr must point to
an ASCII byte string terminated by a zero byte (ASCII null). */

xg$write: procedure (string$ptr) external;
declare string$ptr pointer; end;
xgSvecSwrite: procedure (row,col,string$ptr) external;
declare (row,col) byte, string$ptr pointer; end;

/* Following two routines write an ASCII message of fixed length on the
screen at current cursor position. The first writes a single char-
acter while the second permits writing a message up to 131 char. */

xg$show$char: procedure (char) external; declare char byte; end;

xg$show$msg: procedure (msg$ptr,length) external;
declare msg$ptr pointer, length byte; end;

/* Following three routines are line printer interface routines providing
string output, form feed, and multiple line feed respectively. The
first requires a pointer to a string as defined above. */

xg$lpSout: procedure (string$ptr) external;
declare string$ptr pointer; end;
xq$lpsff: procedure external; end;
xq$1lp$lf: procedure (nlines) external; declare nlines byte; end;

/* Following three routines return an ASCII string representation of the
current time and/or date. "dest$ptr" is a pointer to the destination
buffer which must be of length 20, 8, and 9 bytes respectively. */

41

xgStime$date: procedure (dest$ptr) external;
declare dest$ptr pointer; end;

xgStime: procedure (dest$ptr) external;
declare dest$ptr pointer; end;
xg$date: procedure (dest$ptr) external;

declare destSptr pointer; end;

/* Following three functions return numeric value of operator keyin. */

xgSgetsShex$word: procedure (max, last$Skey$Sptr) word external;
declare max word, lastSkeyS$Sptr pointer; end;
xg$getShex$dword: procedure (max, lastkeyptr) dword external;

declare max dword, lastkeyptr pointer; end;
xggetdecSinteger: procedure (min, max, lastkeyptr) integer external;
declare (min, max) integer, lastkeyptr pointer; end;

/* Following four routines involve PLM86 REAL floating point quantities.

In all cases "fp$ptr” .is a pointer to a structure of the form:

declare fp based fp$ptr structure
(value real, min real, max real); */

xgSget$real: procedure (fp$ptr, lastSkey$ptr) external;

declare (fp$ptr, last$keyS$ptr) pointer; end;
xg$encodeSreal: procedure (fp$ptr, output$buffer$ptr) external;

declare (fp$ptr, outputSbufferS$Sptr) pointer; end;
xg$decodes$real: procedure (fp$ptr, input$buffer$ptr) external;

declare (fp$ptr, input$buffer$ptr) pointer; end;
xq$write$real: procedure (fp$ptr) external; declare fp$ptr pointer; end;

/* Following two routines get an ASCII string from the operator keyboard
and place it in the buffer designated by "dest$ptr". The first is a
general-purpose routine while the second gets a string of max length
48 bytes. */

xqgetinfo: procedure (dest$ptr, nchar, last$key$ptr) external;
declare nchar byte, (dest$ptr, lastS$key$ptr) pointer; end;
xqgetStitle: procedure (dest$ptr, last$key$ptr) external;
declare (dest$ptr, lastSkeyS$ptr) pointer; end;

/* Following function returns a PLM86 DWORD which represents a 1-4 byte
command in packed form. The bytes are packed such that the command
may be tested by a PLM86 instruction of the form:

IF CMD = 'DIR ' THEN CALL DIRSCMDSSERVICE ; */
xggetcommand: procedure (lastkeyptr) dword external;
declare lastkeyptr pointer; end;

/* Following sends CR plus specified number of LF to screen cursor. */

xqcrlf: procedure (nlf) external; declare nlf byte; end;

42

/* Following three routines write specified quantity to the CRT in

hexadecimal or
single blank.

signed decimal format preceded and followed by a

WORD and DWORD quantities are written in hex and

integer quantities are written in signed decimal. */

xq$write$word:
xqg$writes$dword:
xqSwriteSinteger:

procedure (val) external; declare val word; end;
procedure {(val) external; declare val dword; end;
procedure {val) external; declare val integer; end;

/* Following two routines provide error message display. The first
prints a diagnostic message on the same line as the operator entry;
a beep is sounded and following either <rub> or <esc> the message
plus the faulty operator entry is erased, The second erases the
bottom line (24) on the screen and flashes the message until <esc>

is entered. */

xq$diagnostic:

xgSerror$message:

procedure (msg$ptr) external;
declare msg$ptr pointer; end;
procedure (msg$ptr) external;
declare msg$ptr pointer; end;

/* Following six routines provide for display code conversions. */

xg$encode$word:
xg$encode$dword:
xg$encode$integer:
xg$decodeSword:
xgSdecodes$dword:

xg$decode$integer:

/* Following five

procedure (val,output$ptr) external;
declare val word, output$ptr pointer; end;
procedure (val,output$Sptr) external;
declare val dword, output$ptr pointer; end;
procedure (val,output$ptr) external;
declare val integer, output$ptr pointer; end;
procedure (input$ptr) word external;
declare input$ptr pointer; end;

procedure (input$ptr) dword external;
declare input$ptr pointer; end;

procedure (input$ptr) integer external;
declare input$ptr pointer; end;

routines invoke screen image handler processes. */

xg$setSimageS$Spointer: procedure (image$ptr) external;

declare image$ptr pointer; end;

xg$fetchSimagesSpointer: procedure (row,col) pointer external;

xg$imageSinsert:
xg$imageSextract:

xg$createSstatic:

declare (row,col) byte; end;

procedure (nbytes,string$ptr,row,col) external;

declare (nbytes,row,col) byte, string$ptr pointer; end;
procedure (row,col,nbytes,string$ptr) external;

declare (nbytes,row,col) byte, string$ptr pointer; end;
procedure external; end;

43

/* Following six routines invoke page display processes., */

xgSscreenSstatic: procedure external; end;

xg$screenSbuffer: procedure word external; end;

xg$screen$show: procedure (seg$token,keep$flag) external;
declare seg$token word, keepS$flag byte; end;

xq$screenSrefresh: procedure (seg$token,keep$flag) external;
declare seg$token word, keep$flag byte; end;

xg$screen$clean: procedure (seg$token,keep$flag) external;
declare seg$token word, keep$flag byte; end;

xq$screen$finish: procedure external; end;

/* Following three routines control the annotation of display pages
in the upper left corner. */

xg$show$Suser$name: procedure external; end; /* row 1, col 1 */
xg$showScmdSname: procedure external; end; /* row 2, col 1 */
xg$declare$Scmd$name: procedure (cmd$ptr) external;

declare cmd$ptr pointer; end;

Srestore

44

1. Glover, Richard D.: Aircraft Interrogation and Display System:
Support Equipment for Digital Flight Systems.

REFERENCES

NASA TM-81370,

A Ground
1982,

2. Glover, Richard D.: Application Experience With the NASA Aircraft Interroga-
tion and Display System: A Ground Support Equipment for Digital Flight

Systems., Proc. IEEE/AIAA Sth Digital Avionics Systems Conference, pp. 17.3.1
1983, Seattle, Washington.

to 1703.10' Octo 31 - NOV. 3'

TABLE 1. — XAIDS BASELINE BOARD COMPLEMENT

Slots Assignment Manufacturer Board type Piggyback modules
1 Floppy controller Intel Corp. SBC 208
2 Hard disk controller sMs@ FWD8006
Maintenance processor Intel Corp. SBC 86/05
4,5 LAN I/0 channel Computrol 30-0090 30-0078 (1-MHz modem)
6,7 Real-time processor Intel Corp. SBC 86/30 SBX 328 (DAC, 2 each)
SBX 337 (8087 NDP)
SBC 304 (128K RAM)
8,9 (Empty)
10 Auxiliary 256K RAM Intel Corp. SBC 056A
11 Central processor Intel Corp. SBC 86/30 SBX 337 (8087 NDP)
SBC 304 (128K RAM)
12 Auxiliary 64K PROM Intel Corp. SBC 464
13 to 19 (Empty)
20 Peripheral processor Intel Corp. SBC 80/30
21 Clock and Calendar pPP TCU-410

agcientific Micro Systems, Inc.

bpigital Pathways, Inc.

45

46

TABLE 2. — XAIDS BUS MEMORY MAPPING

Memory address

Block size,

(hexadecimal) bytes Board

FOO00 to FFFFF 64K Not mapped to bus
EOOOO0 to EFFFF 64K Auxiliary PROM
C8000 to DFFFF 96K User I/0 boards
C4000 to C7FFF 16K PERPRO RAM

C0800 to C3FFF 14K System I/O spare
C0000 to CO7FF 2K LAN controller RAM
80000 to BFFFF 256K RTPRO RAM

40000 to 7FFFF 256K Auxiliary RAM
00000 to 3FFFF 256K CENPRO RAM

e

TABLE 3. — XAIDS BUS I/O MAPPING

I/0 address
(hexadecimal)

Block size,

bytes

Assignment

xxXF0 to xxF72

0180 to O1AF
0100
000F

8
48
1
1

Time and date unit

Floppy diskette controller
Hard disk controller
Auxiliary RAM parity register

8xx signifies that the digite are not decoded.

TABLE 4. — RTPRO CHANNEL DECLARATION STRUCTURE

Number of

bytes Field type Assignment
2 ASCII Channel mnemonic2
1 Integer Channel statusP
1 Integer Channel number (0 to 31)
4 Hexadecimal Assigned channel mask€
4 Pointer Address of CRT setup routined
4 Pointer Address of CRT begin routine®
4 Pointer Address of CRT halt routinef
4 Pointer Address of DAC setup routined
4 Pointer Address of DAC begin routine®
4 Pointer Address of DAC halt routinef

32 total bytes per channel declaration structure

aFour system channels are declared by RTPRO:

'ppP!
'RP'
|RA'
lRDI

PERPRO RAM (address range 04000H to O7FFFH)
RTPRO RAM (address range O0000H to 3FFFFH)
RDAS analog inputs (ADC O to 15)

RDAS discrete inputs (byte registers 0 to 5)

The user may declare as many additional channels as
desired, up to a maximum of 32 total channels.

bchannel status is used to denote condition of data

acquisition flow paths:

0

1
2
3

channel fail

CRT data flow OK
DAC data flow OX

both CRT and DAC data flow OK

CChannel mask is equal to 2**<channel number>.

dgetup routine is called once for each data item block
requesting channel in corresponding acquisition
structure.,

eBegin routine is called cnly once to initiate channel
data flow to corresponding acquisition structure.

fHalt routine is called only once to terminate channel
data flow to corresponding acquisition structure.

47

TABLE 5. — RTPRO DATA ACQUISITION BLOCK STRUCTURE

Nu:;z:sof Field type Assignment
1 Integer Sequence number?
1 Integer Channel number (0 to 31)
1 Integer Raw data type (0 to 63)
2 Integer Symbol table entry number (1 to 510)
1 Integer Number of raw data fetchesb
4 Pointer Address of raw data snapshot routine
4 Pointer Address of raw data in channel buffer
8 Unstructured Raw data register®
4 Pointer Address of raw data processing routine
8 Hexadecimal Exclusive-OR maskd
8 Hexadecimal AND maskd
8 Unstructured Adjusted data register®
4 Floating point Constant KO (intercept)®
4 Floating point Constant K1 (slope)€
4 Floating point Processed data register
2 Integer or flag DAC value or zero flag registerf

64 total bytes per data acquisition block (either CRT or DAC)

a8For DAC acquisition, sequence number must be 0O to 15, representing

which DAC receives the output. For CRT acquisition, it must be
0 to 254, representing the index number of the data item in the

page display handler. In either case, a value of OFFH (255)
indicates the end of data acquisition table.

bThe type of fetch performed depends on the raw data snapshot
routine, The total data fetch must not exceed 64 bits in length,

Corganization of these registers is under the control of the raw data
snapshot and raw data processing routines.

dused by masked binary (MBIN) and discrete (DISC) raw data handlers.
XOR mask used for inversion; AND mask provides selection.

€Used for both DAC and CRT acquisition processing for parameters that
can be approximated by a first-order (linear) equation. Any
parameter needing higher order processing (including piecewise
linear) must have its own dedicated raw data processing routine.

fror DAC acquisition, this register contains DAC output value in

left-justified 12-bit signed twos complement binary. For CRT
acquisition, it contains zero flag indicating state of processed

data register.

TABLE 6. — RTPRO RAW DATA TYPE DECLARATION STRUCTURE

Number of

Fie i
bytes 14 type Assignment
4 ASCIIX Raw data type mnemonic@
4 Pointer Address of CRT setup routineb
4 Pointer Address of DAC setup routine€

12 total bytes per raw data type declaration
structure

2seven system raw data types are declared by RTPRO:

DISC discrete

UBIN unsigned binary

SBIN signed binary

SFBN signed fractional binary
ASC ASCII character string
IFLT Intel floating point
MBIN masked binary

The user may declare as many additional raw data
types as desired, up to a maximum of 64 total raw
data types.

DCRT setup routine is called once for each data item
block having corresponding raw data type in CRT
acquisition structure.

CDAC setup routine is called once for each data item

block having corresponding raw data type in DAC
acquisition structure.

49

TABLE 7. — RTPRO FUNCTION GENERATOR BLOCK STRUCTURE

Number of

bytes Field type Assignment
Integer Sequence number (0 to 99)
Integer Timer number (0 to 7)
Integer Timer number link

-— (Fill)

Integer Enable time link
Integer Trigger time link
Integer Disable time link
Hexadecimal Dynamically active flag
Integer Dynamic backward link
Integer Dynamic forward link
Integer Ooutput destination code2
Integer Function type number (0 to 31)
Integer Function state variableP
Pointer Address of state change routine
Pointer Address of dynamic routine

Floating point Enable time
Floating point Trigger time
Floating point Disable time
Floating point Register 0€
Floating point Register 1€
Floating point Register 2€
Floating point Register 3€
Floating point Register 4C
Floating point Register 5€

‘hbhhhﬁgﬁpphpd_ﬁ_n_A..A..nNNN_a_I.‘_s

Floating point Register 6€
64 total bytes per function generator block

aputput destination code values:

0 to 27 indicates RDAS DAC number
64 to 111 indicates RDAS discrete output bit 0 to 47

brunction states:

0 idle

1 enabled

2 triggered
3 disabled

CGeneral-purpose registers whose assignment is under the
control of the individual function type software modules.

TABLE 8. — CENPRO COMMAND DECLARATION STRUCTURE

Nuﬂ;iZSOf Field type Assignment
4 ASCII Command mnemonic?2
4 Pointer Address of ASCII name stringP
4 Pointer Address of ASCII description string®©
4 Pointer Address of command servicing routine
4 Pointer Address of template (if any)d
2 Integer Length in bytes of template

22 total bytes per command declaration structure

T e
e e e e e S

agight system commands are declared by CENPRO:

Mnemonic Name Description
'‘MP ! Make page Tabular data display format
'FF ! Free form Unstructured data display format
‘b ! Load display Display scratch file loader
'DK ° Diskette Display scratch diskette manager
'SYM ! Symbols Symbol table manager
'RDFN' RDAS £(t) RDAS DAC and discrete function
generator generator
'TEST' Test routines User and system maintenance
packages
'EXIT' Exit XAIDS Return to RMX86 executive

User may declare as many additional commands as desired.

bName may be up to 20 characters in length, delimited by zero

byte.

Cpescription may be up to 45 characters in length plus

delimiter.

d"Template" refers to a data structure that can be saved on

scratch diskette as a numbered file and subsequently
retrieved using ‘'LD’'.

51

52

TABLE 9. — CENPRO SCRATCH DISKETTE DIRECTORY

Number of . .
bytes Field type Assignment
5 — (Not used)
21 ASCII Time and date of scratch diskette initialization
49 ASCII Name of scratch diskette
7500 Structured Scratch file information entries?

7575 total bytes in scratch diskette directory file ‘'displayfiles'’

ayp to 100 scratch files may be created bearing RMX86 filenames '1' to
'100'. For each file created by a SAVE command within an XAIDS
servicing routine, the corresponding entry in the scratch diskette
directory file is updated with the following information:

Number of Subfield .
t
bytes type Assignmen
1 Integer Flag byte (0 denotes empty, 1 denotes occupied)
4 ASCII Command mnemonic of saving routine
21 ASCII Time and date save is performed
49 ASCII Title generated by saving routine

75 bytes per directory entry

TABLE 10. — CENPRO DISPLAY FORMAT DECLARATION STRUCTURE

Number of . .
bytes Field type Assignment
1 ASCII Display format type code letter?
4 Pointer Address of format servicing routine
5 total bytes per display format declaration structure

2pight display formats are declared by CENPRO:

Code Invocation Description R?glster
: displayed
‘A’ Aw Alphanumeric (ASCII) Raw data
‘B’ Bw Binary Raw data
'L’ Lw Logical ('T' or 'F') Raw data (least
significant
bit only)
'z zw Hexadecimal Raw data
' Iw Signed decimal Adjusted data
integer
‘P! Fw.d Signed fixed point Processed data
'E! Ew.d Signed exponential Processed data
™! Mw Message (one of two) Zero flag

w is the field width (1 to 80) and
User may declare
tional formats for customized data

places (0 to 9).

remaining letters of the alphabet.

d is number of decimal
as many as 18 addi-
display using the

53

54

TABLE 11. — SYMBOL TABLE ENTRY BLOCK STRUCTURE

Number of

bytes Field type Assignment
2 Integer Entry number index (1 to 510)
2 Integer Link up index2
2 Integer Link down index2
14 ASCII Allowable channel codesbP
32 ASCII Symbol name + description field€
4 ASCII Raw data type designator
1 — (spare)
1 Integer Number of locations to be fetched
8 Hexadecimal Exclusive-OR maskd
8 Hexadecimal AND maskd
4 Floating point Display zero
4 Floating point Display max
4 Floating point Recorder bias
4 Floating point Recorder scale
4 Hexadecimal Address of raw data®
1 ASCII Display format type code (letter)f
1 Integer Display format field length
(1 to 80)f
1 Integer Display format number of decimal
places (0 to 9)f
1 —— (Spare)
10 ASCII Zero message9d
10 ASCII One message9
10 ASCII Units

128 total bytes per symbol table entry block

arinks provide alphabetized access.

bone to five allowable channels may be specified, two alpha-
numeric characters each separated by a single blank.

CName subfield is delimited by first blank encountered.
Remainder of field is considered descriptive information for
display only.

dThese are used by the masked binary (MBIN) and discrete (DISC)
raw data handlers. XOR mask used for inversion; AND mask
provides selection,

€Mapping scheme depends on channel handler.

fThese three fields combined provide FORTRAN-like format
specification.

9dAlternative messages selected by message (M) display format
handler,

TABLE 12. — CENPRO DATA DISPLAY ITEM BLOCK STRUCTURE

Number of Field

Integer Request number (0 to 254)2
ASCII Display format type code
Integer Display format field length (1 to 80)

S N 4

Integer Display format number of decimal places

(0 to 9)
4 Pointer Address of format servicing routineP
1 Integer Row number (1 to 24)
1 Integer Column number (1 to 80)
10 ASCII Zero message€
10 ASCII One message®

30 total bytes per data display item block

arhig number is keyed to the RTPRO CRT data acquisition block

sequence number corresponding to data item. This allows
format servicing routine to map RTPRO memory registers
containing parameter data.

bThis address is obtained from display format declaration
structure.

CThese messages are copied from symbol table entry block
structure. They are used only by type M (message) display
format routine.

55

56

TABLE 13. — CENPRO MAKE PAGE DISPLAY TEMPLATE

Number of . .
bytes Field type Assignment
4 ASCII Command mnemonic is 'Mp !
50 ASCII Page title@
760 Structured Data definition entriesb

814 total bytes per MP template

A0perator chooses desired page title (appears on
line 2).

boperator may enter up to 20 data items. The data

items each occupy a single line (4 to 23) and
are accessed by item number (1 to 20). Each

item is defined by a structure as follows:

Number of Subfield

bytes type Assignment
ASCII Channel code
32 ASCII Parameter name
ASCII Display format type code
1 Integer Display format field
length
1 Integer Display format number of
decimal places
1 -—- (spare)

38 bytes per line item entry

A vacant entry is denoted by two blanks in
channel code subfield.

TABLE 14. — CENPRO FREE FORM DISPLAY TEMPLATE

Number of

. N ,
bytes Field ype» Assignment
4 ASCII Command mnemonic is 'FF !
50 ASCII Page titled
1680 ASCII Background imageb
10200 ~ Structured Data definition entries®

11934 total bytes per FF template

a8operator chooses desired page title (appears on
line 2).

boperator may create any static background desired
within lines 3 to 23,

COperator may create from 0 to 255 data items
positioned anywhere within lines 3 to 23. If
desired, the display may be entirely static
information (background only). Entries are
structured as follows:

Number of Subfield

bytes type Assignment
2 ASCI1 Channel code
32 ASCII Parameter name
1 ASCII Display format type code
1 Integer Display format field
length
1 Integer Display format number of
decimal places
1 —_— (Spare)
1 Integer Row location (3 to 23)
1 Integer Column location (1 to 80)

40 bytes per data item entry

A vacant entry is denoted by two blanks in
channel code subfield.

57

58

TABLE 15. — CENPRO RDAS FUNCTION GENERATOR TEMPLATE

Number of

. . t
bytes Field type Assignmen
4 ASCII Command mnemonic is 'RDFN'
49 ASCII Program titled
21 ASCII Time and date of creationP
1 Integer Number of template entries
29 -— (Unused)
5200 Structured Program function control
entries®
5304 total

apperator chooses desired page title (appears on
line 2).

bThis records time and date when save operation is

performed. This field is filled with blanks if
template modified and save not yet performed.

Coperator may create from 1 to 100 function control
entries positioned anywhere within the table.
Entries are structured as follows:

Number of Subfield

bytes type Assignment

4 ASCII Output channel code

32 ASCII Function type
specification

4 ASCII Timer control
specification

4 Real Enable time

4 Real Trigger time

4 Real Disable time

52 bytes per function control entry

A vacant entry has four blanks in output
channel code subfield.

TABLE 16. — ASCII EDITOR ENTRY BLOCK STRUCTURE

Number of

bytes Field type Assignment
2 Integer Entry number index (1 to 510)
Integer Link up index2
2 Integer Link down index?
32 ASCII Entry name and description
fieldP
10 ASCII Information field 1€
10 ASCII Information field 2€
10 ASCII Information field 3°€
10 ASCII Information field 4€
10 ASCII Information field 5€
10 ASCII Information field 6€
10 ASCII Information field 7€
10 ASCII Information field 8€
10 ASCII Information field 9€

128 total bytes per ASCII editor entry block

alinks provide alphabetized access.

bName subfield is delimited by first blank encoun-
tered. Remainder of field is considered descrip-
tive information for display only.

CThese fields are assigned meanings by the command
handler invoking the ASCII editor routine.

59

60

TABLE 17. — X-29A INTERFACE CHANNEL BOARD COMPLEMENT

Slots Assignment Manufacturer Board type Piggyback modules
13,14 X~-29A I/0 channel A Intel Corp. SBC 86/14 ARX-429B2

SBX 351b
15,16 X-29A I/0 channel B Intel Corp. SBC 86/14 ARX=-429B2

SBX 351b
17,18 X-29A I1/0 channel C Intel Corp. SBC 86/14 ARX=-429B2

8ARINC 429B transceiver is manufactured by Procise Corporation.

brs-232 serial interface module is manufactured by Intel Corporation.

TABLE 18, — XAIDS TO RDAS MESSAGE STRUCTURE

Number of

bytes Field type Assignment
1 Control Command byte@
1 -— (Spare)
1 Packed binary Discretes out 07 to 00
1 Packed binary Discretes out 15 to 08
1 Packed binary Discretes out 23 to 16
1 Packed binary Discretes out 31 to 24
1 Packed binary Discretes out 39 to 32
1 Packed binary Discretes out 47 to 40
56 Offset binary DAC 00 to 27P
8 —— (spare)
2 Hexadecimal Packet stream 1link€

74 total bytes per XAIDS message, assuming no
packets appended

aThis message format is for message carrying

discretes out and DACs. Two different commands
are recognized by RDAS:

0 perform input data acquisition cycle
2 update output discretes and DACs

For the first of these, message length is 1
(command alone).

bpaC values are 12-bit left-justified offset
binary with the following ranges:

7FFxH +9,995 VvV
000xH ov
800xH =-10,000 V

Least significant four bits are not used.

CLink is OFFFFH if no packets are appended.

61

62

TABLE 19. — RDAS TO XAIDS REPLY STRUCTURE

Nug;::sof Field type Assignment
1 Control Background task status byte@
3 -— (Spare)
2 Integer Port A transmit queue lengthb
2 Integer Port B transmit queue lengthP
2 Integer Port A receive queue 1engthb
2 Integer Port B receive queue lengthP
2 Integer Printer queue lengthb
1 Packed binary Discretes in 07 to 00
1 Packed binary Discretes in 15 to 08
1 Packed binary Discretes in 23 to 16
1 Packed binary Discretes in 31 to 24
1 Packed binary Discretes in 39 to 32
1 Packed binary Discretes in 47 to 40
32 Offset binary ADC 00 to 15€
2 Hexadecimal Packet stream linkd

54 total bytes per RDAS reply, assuming no packets
appended

a1f status byte is not equal to 0, then RDAS background

task is busy processing previous packet stream and
cannot accept more. When processing is complete,
response packets are appended as required to next
outgoing reply and status byte is reset to zero,

bRDAS reports these each cycle to give XAIDS means of

managing circular queues that buffer I/0 flow to and
from peripherals.

CADC values are 12-bit left-justified offset binary with
the following ranges:

7FFOH +9.995 Vv
0000H ov -
8000H -10.000 V

Least significant four bits are always zero.

drink is OFFFFH if no packets are appended.

TABLE 20. — XAIDS-RDAS PACKET FORMATS

Code Length Structure Description
XAIDS to RDAS message packet formats
10 5 + code, address, count, Write block to memory
[n bytes]
1M 5 code, address, count Return block from memory
12 5 + code, port, count, Write to I/0O ports
[n bytes]
13 5 code, port, count Read I/0 ports
14 3 code, address Execute subroutine
20 3 + code, count, [n bytes]) Output to printer
21 3 + code, count, [n bytes] Output to port A
22 1 code Return port A receiver gueue
23 3 + code, count, [n bytes] Output to port B
24 1 code Return port B receiver queue
25 1 code Activate port A
26 1 code Deactivate port A
27 1 code Activate port B
28 1 code Deactivate port B
RDAS to XAIDS reply packet formats
10 2 code, status Memory write complete
1M 6 + code, status, address, Memory read block
count, [n bytes}
12 2 code, status I/O0 write complete
13 6 + code, status, port, I1/0 read block
‘ count, [n bytes]
14 2 code, status Subroutine executed
20 2 code, status Printer output complete
21 2 code, status Port A output complete
22 6 + code, status, count, Port A input queue
[n bytes])
23 2 code, status Port B output complete
24 6 + code, status, Port B input queue
[n bytes]
25 2 code, status Port A activated
26 2 code, status Port A deactivated
27 2 code, status Port B activated
28 2 code, status Port B deactivated

63

64

TABLE 21. — XAIDS BUS INTERRUPT ALLOCATION

Interrupt Generated by Signals Monitored by2
INTO/P INTO pushbutton Software reset RTPRO and user 1/0
INT1/ LAN controller I/0 complete RTPRO
INT2/€C User I/0 channel User defined RTPRO
INT3/C User 1/0 channel User defined RTPRO
INT4/C RTPRO User defined User I/0 channels
INTS5 /4 PERPRO 1/0 acknowledge CENPRO
INT6/4 Hard disk controller I/0 complete CENPRO
INT7/4 Floppy controller I/0 complete CENPRO

aThe maintenance processor also monitors all eight interrupts.

bysed to reenter bootstrap firmware prior to rebooting.

CrReserved for user.

dused by operating system basic 1/0.

TABLE 22. — XAIDS CENPRO INTERRUPT ASSIGNMENTS

Interrupt Generated by Signals
NMI2 Fail-safe timer Bus timeout
IRO NDP Floating-point error
IR1 (Spare)
IR2P Timer 0 10-msec clock
IR3C PERPRO I/0 acknowledge
IR4C Hard disk controller I/0 complete
IRS5C Floppy controller I/0 complete
1r69 USART Receiver ready
1r7d USART Transmitter ready

aCan be activated and deactivated using XAIDS system

calls; flashes red bus timeout light and sounds beep
at operator's terminal.

bysed by operating system as master timer.

CRouted to CENPRO through XAIDS bus interrupt lines.

dyused by operating system debugger terminal handler.

65

66

TABLE 23., — XAIDS RTPRO INTERRUPT ASSIGNMENTS

Interrupt Generated by Signals
NMI& INTO Pushbutton Software reset
IRO NDP Floating~-point error
IR1P Fail-safe timer Bug timeout
IR2a LAN controller I/0 complete

IR32,C User 1I/0 channel
IR42/C User I/0 channel
IRS5 Timer 0

IR6C Timer 1

Ir7¢/9 SCP INTR

User defined

User defined

2-msec clock

User clock

User manual interrupt

aRouted to RTPRO through XAIDS bus interrupt lines.,

bplashes red bus timeout light and sounds beep at

operator's terminal,

CSetup and servicing under control of user software

modules.,

dGenerated by status and control panel INTR push-
button; this switch is filtered and generates
only one interrupt per operation.

TABLE 24. — XAIDS PERPRO INTERRUPT ASSIGNMENTS

Interrupt Generated by Signals
TRAP (Not used)
O Fail-safe timer Bus timeout
B (Not used)
Cc (Not used)
IRO (Not used)
IR1 (Not used)
IR2 {Not used)
IR3P Timer 1 10-msec clock
IR4 (Not used)
IRSC USART Transmitter ready
IR6C USART Receiver ready
IR7 (Not used)

aFlashes red bus timeout light and sounds beep
at operator's terminal.

bused as master clock for screen refresh timing.

Cused in servicing of main operator terminal.

TABLE 25. — XAIDS MAINTENANCE PROCESSOR
INTERRUPT ASSIGNMENTS

Interrupt Generated by Triggers
NMI2 Fail-safe timer Bus timeout
IRO Bus INTO/ Tally counter O
IR1 Bus INT1/ Tally counter 1
IR2 Bus INT2/ Tally counter 2
IR3 Bus INT3/ Tally counter 3
IR4 Bus INT4/ Tally counter 4
IRS Bus INTS/ Tally counter 5
IR6 Bus INT6/ Tally counter 6
IR7 Bus INT7/ Tally counter 7

arFlashes red bus timeout light and sounds
beep at operator's terminal.

67

68

Figure 1.

Extended aircraft interrogation and display system.

ECN 31858

““““ ar---- -/

User | Statusand |} Analog | | Debugger | Hard r
110 | control panel | | recorder | | terminal | disk R
channel | (L ____JbL____JL_____}J "o I
1 _“ e A r channel —

| N ¥
Real- Auxiliary
R Central
User || time RAM proir;sr:or Floppy |'_
11O processor (256- (16-bit) diskette P
channel | (16-bit) kbyte) T]e] 1
2 channel
] [1 1 L
! XAIDS system bus
* j [] l j | Local
-
Maintenance Auxiliary Peripheral neatr\:zrk .
processor PROM processor channel [.
T (16-bit) (65-kbyte) (8-bit) i
!
] ' [
l A | A | K
User j v T - L Master !
wo [T T - et N Staiatebs time and |
channel || Monitor 11 Line) § Operator | date L
m | terminal || printer || terminal | unit
I, S Y NPIDII | B -
Figure 2. XAIDS system overview.

Figure 3.

Figure 4.

o EON TR i

1
19-Mbyte H

8-in single-sided, |
double-density |
disk drives (4) |

i

RDAS 1 |
____i_'"__—‘

L

T

:
————————)
RDAS n |
________ -

XAIDS input-output panel.

XAIDS status and control panel.

ECN 31860

70

1HO] RTPRO : CENPRO] PERPRO : Peripherais
I | 1 !
[} | t 1
! System 1 Hard copy |
LI.':': :::: ;— f::;::: A time — | snspshop 1= Printer
! ! manager ! servicing !
L A T I x ‘
. . : |
: | : '
User t | Raw dats | Display ! »| Data |
channel +— ! type : format ! display + CRT
1 ! handlers ! handiers \ servicing :
[}
T . > i T ! !
hd T \ H -+ dh i
1 | 1 1 |
i Dat ; Operat : :
User ata) perator | _ | ‘
channel || E acquisition [~ : page ! I::ry::'a;d ' Analz
n ! tive + handlers T 9 | 1| recorder
: : [: A :
| P cmmed e e el - !
: : l
LtAN |1 Symbol table ; +— Keyboard
\ |
! 1
: Common memory ! ! 6096
Figure 5. XAIDS functional interfaces.
Simulation link
y y
X-29A Real-
triplex flight time
control system simulation
cLPA 10p4 10OP 4 4
System
3y inter- ¥ Yy 18y 28y 43 48
face / Analogs 1 Discretes
busses
1
SEU SEU
1 2 RDAS
4
2y 24/ 3/ y
RS-232C ARINC LAN
4298
y
XAIDS
6007
Figure 6. XAIDS linterfaces to X-29A

project systems.

Figure 7.

XAIDS cardcage.

ECN 31859

7

£98L€ NO3

198LE NO3

*Tourd 905PFIOJUT JFPIDITP V6Z-X SAIVX 6 oInbTg

Toued ooevyrOojzUY WOISAS SAIVX °§ ©INBTI

S
AR T G R

72

Figure 10.

ECN 31856

Remote data acquisition subsystem.

73

74

r
{ RS-232 | | RS-232 |
I portA | i1 portB |
L-—T——J L-°T—-J
' Discretes 1 XAIDS
AO4 to AO7 AOO0 to AO3 AlO to Al1S } DI0 to DI47 DOO to DO47}
A A ' v ¥ = 3
18- o o Local
Quad Quad channel expander expander ares
DAC DAC ADC board board network
A 8 channel
| 1 | 1 L I |
RDAS iocal bus
{ | | | | I
ADC
Quad Quad Quad Quad Quad rggAsssor timing
DAC DAC DAC DAC DAC proce - -0 test
(8-bit) point

! v v ! v ' 1
AOB 1o AO11 AO12 to AO1S AO16 to AO19 AO20 to A023 AO24 to AG27 | :
F'“i'1r't‘1

{ Monitor | | Line |
| terminal | | printer |
| RN | B |

6098

Figure 11. RDAS overview, X-29A configuration.

1
H
i
i

ECN 31857

RDAS cardcage.

Figure 12 .

75

*obupyoxe PIPP SVAY-SAIVX °*HT oINHTI

809 gesw ‘Buioinies SQIVX JO pue wosy ewn pesdejz
[4 3 [+] 8 8 9 ¥ [4 0
I I [| |

Bujoiues indug indino
sawx sSvay Svay

Ajdas puewwod ebessaw
svay induj inding

2z 96 = d)es WNWXeW
29sw 0L = pouad wnwimw

*toured 3ndano-3ndur Iosn Sy ‘I oINBTA

¥Y98LE NOF

S

s
S

76

X294 34.3.20 EXTEMBED AIRCRAFT INTERROGATION & DISPLAY SYSTEN 08108:57
XAIDS 84.8.20 XAIDS COMMAMD INTERPRETER 2 W0V 84

COMMANDS

a (QUIT COMMAND) SET STOP MODE IN CLP ABC & I0P ABC
RU {RUN COMMAND) SET RUN NODE IN CLP AKC & I0P ARD
SEUL (5YS EVAL INIT 1) TERMINAL ENULATOR FOR SEU NO. 1

SEUZ (SYS EVAL UNIT 2) TERMINAL ENULATOR FOR SEU NJ. 2

PTCH (PATCH MANAGER) X294 PROCESSORS NENORY OVERLAY MANAGER
PHSH (POST WORTEN SWITCH) ARINC STALE DATA DISPLAY CONTROL

GAIN (GAINS CHECKGUT) X294 AIR DATA & GAINS CHECKOUT PACKAGE
L4 (MAKE PAGE) TABULAR DATA DISPLAY FORMAT

FF (FREE FORM) UNSTRUCTURED DATA DISPLAY FORNAT

4] (LOAD DISPLAY) PISPLAY SCRATCH FILE LOADER

19 (DISKETTE) DISPLAY SCRATCH DISKETTE MANAGER

sm (SYNBOLS) SNBOL TABLE HANAGER

RIFY (RDAS f(t) 3EN) RDAS DAC/DISCRETE FUNCTION GEMERATOR
TEST (TEST ROUTINES) USER 4 SYSTEM MAINTENANCE PACKAGES

(EXIT XAIDS) RETURN TO RIOXBs EXECUTIVE

ENTER COMMAND)

Display 1. Main command menu.

EXTENDED AIRCRAFT INTERROSATION & DISPLAY SYSTEM
USER 4 SYSTEM MAINTEMANCE PACKAGES

X294 84.3.20
TEST ROUTINES

TeS7

8AUD (BAUB RATE) XAIDS 1/0 CHANNELS RS-232 CONTROL/CHETXOUT
ARNC (ARINC TEST) XAIDS 1/0 CHANNELS ARINC CHECKOUT PACKAGE
RDAS (REMOTE DATA ACQ SYS) RDAS FUNCTIOMAL TEST ROUTIMES

CON (CONSTANTS ENCODER) PLNBS MUMERICAL VALUE GENERATOR

(AL (CALIBRATE) ANALOG RECORDER DAC CALIBRATION

(esc) (EXIV TESD) RETURN T0 XAIDS COMMAND INTERPRETER

ENTER TEST)

Display 2. TEST command menu.

77

78

X294 84.8.20 EXTENDED AIRCRAFT INTERROGATION & DISPLAY SYSTEM
RUN COMMAND ALL CHANNELS RN ROUTINE

VERIFYING SEU § LINK - - MAIT
/

7 CHABC

7 300,01

0C00 BC8C 6CBC B8CHC

0C01 A3F1 4SF1 451

7 M

"

VERIFYING SEU 2 LINK - - WAIT
/

7 X

7 3C00.C01

0C00 FO3IS FO3S FO35
0CO1 BOAS DOAS BOAS
? R

"

NAITING FOR (esc))

COMPLETE.

Display 3. RU command display.

EXTENBED AIRCRAFT INTERROGATION & BISPLAY SYSTEX
ALL CHANNELS STOP ROUTINE

X294 84.3.2
QIT ComAND

VERIFYING SEV ¢ LINK - - WAIT
/

? CHARKC

7@

7 3C00.C01

0C00 8CSC 8C8C &CsC
001 45F1L ASF1 4S5F1
2

VERIFYING SEU 2 LINK - - WAIT
/

7 CHAXC

@

7 X0,C01

0C00 FO35 FOI5 FO3S

0001 BOAT D043 D045

?

COMPLETE. MAITING FOR (esc))

Display 4. QT command display.

X294 84.8.20
PATCH MANAGER

CONTAINS :

COMMAND LIST ¢

ENTER CONMAND)

TABLE NAME : IOPARINC - BLK-III-AH-I0P
SAVED ¢ 11:49:03 16 ROV 84
64 ENTRIES

SEND = WRITE CURRENT PATCH TABLE T0 FLIGHT COMPUTER(S)
EBIT = EXAMINE/MODIFY CURRENT PATCH TABLE

SAVE = STORE CURRENT PATCH TABLE ON DISKETTE

WIPE = ERASE CURRENT PATCH TABLE

NAME = REDEFINE TITLE OF CURRENT PATCH TABLE

LIST = COPY CURRENT PATCN TABLE TO LINE PRINTEK

(ESC) = RETURN 70 XAIDS COMMAND INTERPRETER

EXTENDED AIRCRAFT INTERROGATION & DISPLAY SYSTEM 08:23:31
X294 PROCESSORS MEMORY OVERLAY MAMAGER

Display 5. PTCH command menu.

X294 84.8.20
PATCH MANAGER
ITEM ADDR DATA
21 0006 4003

36 0OCDD 400E
37 OCDE 400F
38 OCDF 4010
39 0CE0 4012
40 OCE1 401t

BCL
BCR
FLLI
FLLO
FLRI
Insert

EXTENDEB AIRCRAFT INTERROGATION & BISFLAY SYSTEM 08:24:3
T0PARINC - BLK-III-AH-10P 2]
COMMENTS

!

NZ

XX

¢]

PT

L}
ALPHA
ALPHAI
ALPHAIR
ALPHAIL
SELSI6
FTBISC2
FTDISCI

COMCYCLE

Modify Resove Ur Down (esc)sExit)

Display 6. PTCH command edit display.

79

80

X29A B84.8.20 EXTENDED AIRCRAFT INTERROGATION & DISPLAY SYSTEN 08:33:11
GAINS CHECKOUT DEFAULY TEST POINT 0.6 / 30K NORMAL NOXE 2% MV 84
ITEN CHAN VARTABLE NANE & DESCRIPTION FORMAT VALUE INITS

QCI IMPACT PRESSURE 2415 NIL 6

P81 STATIC PRESSURE 8885 NIL W6
AOAT MEASURED ANGLE OF ATTACK 5.180 DEGREES

PF ROLL RATE 0.000 DEG/SEC
UFO KING FLAP 0.00 DEGREES
YOI RUBBER PEBAL INPUT 0.000 PER CENT
RFAT TOTAL TEMPERATURE 441,27 DEGREES R

TR

SAMDSL NORMAL NOBE ¥
DRSEL DIGITAL REVSN MODE STATUS L1
ARSEL AMALOG REVSN MOBE STATUS L1
DELSEL DIRECT LINK

GRHDL GEAR HANBLE

ALPBIT AOA FAILURE RIT

ADBIT AIR BATA FAILURE BIT

FLPFLG FLAP FLAB FUNCTION

NARDRG AR/DR GAIN TABLE SELECT I1

PR T T B B B)

RP
L
RP
RP
RP
RP
RP
RP
RP

20
Coseute Helr Init Modify Save Title Mraeve (esc)=Exit)

Display 7. GAIN command display.

EXTENDED AIRCRAFT INTERROGATION & DISPLAY SYSTEM 08:33:26
GAIN PAGE OPERATOR ASSISTANCE INFORMATION 29 WV 8

FORCES XAIDS RECONPUTATION OF AIR DATA & GAINS (SINGLE ITERATION).
DISPLAYS OPERATOR ASSISTANCE DISPLAY,
INITIALIZES INPUT VALUES IN I0Ps AMD CLPs .

PERMITS MODIFICATION OF INITIAL VALUE FOR A SINGLE LINE ITEM, AFTER
HHICH MEM AIR DATA & GAIN VALUES ARE AUTOMATICALLY CONPUTED BY XAIDS.

SAVES CURRENT INITIAL VALUES TABLE OM SCRATCH DISKETTE.
PERMITS NEN TITLE 70 BE ENTERED.

SIGNALS BEGIMNING OF MRAPUP OPERATIONS INCLUDING A PROGRAMMED STOP
OF THE 3 CLPs FOLLONED BY DUNP OF THE OUTPUT VALUES VIA THE SEUs,

(ESC) KEY CAUSES RETURN TO XAIBS COMMAND LINE INTERPRETER.

HAITING FOR (esc} }

Display 8. GAIN command help page.

X274 §4.8,20 EXTENDED AIRCRAFT INTERROGATION & DISPLAY SYSTEN v8:18:17

MAKE PAGE FMET TEST ALPHA FAILURES 27 N0V 84
ITEM CHAN VARIABLE NAME & DESCRIPTION FORMAT VALUE UNITS
1 Al ALPHAI Loc Ind Angle of Attack F10.3 3,345 DEGREES
2 A2 ALPHAI Loc Ind Amsie of Attack F10.3 14,985 DEGREES
J A3 ALPHAI Loc Ind Ansle of Attack F10.3 3.598 DEGREES
& A2 ALPHA True Angle of Attack F10.3 0.000 DEGREES
S
6 Al MACH Mach Nuaber F10.3 9.590
7 A2 MACH Mach Nusber F10.3 .59
8 A3 MACH Nach Mumber F10.3 0.5%
9

Al ALT (Patch 42, was RWV A/1 #1) F10.3 4831.558
11 A2 ALT (Patch #2, was RAV A/1 81) F10.3 4831.538 FEET
Ad ALT (Patch 92, vas RAV /1 31) F10.3 4831.558 FEET

Al JH06_3O7 Ale Ineut Fail (local) M0 veeensFAIL
15 A2 DHOA.BO7 Air Ineut Fail (local) M0 aeses FAIL
AT DMOS_BO7 Alr Imrut Faul (local) W10 veees FAIL

FILENO. = 45 DISK = X-29 SCRATCH DISK (PATCH 2 IN)

Display 9. Example MP-driven display.

X29A 94.8.20 EXTENBED AIRCRAFT INTERROGATION & DISPLAY SYSTEM H
MAKE PAGE NAKE PAGE OPERATOR ASSISTANCE INFORMATION 29 MOV 84

o

ERASES ENTIRE TEWPLATE INCLUDING PAGE TITLE,

BISPLAYS OPERATOR ASSISTAMCE DISPLAY,

PERMITS INSERTION, DELETION, OR ALTERATION OF A SINGLE LINE ITEM,
CHAN) TMO-LETTER COBE FOR SOURCE CHANMEL OR TWO BLANKS TO DELETE ITEM
VARIABLE) NANE OF PARANETER TO BE DISPLAYED
NOTE : USER IS GIVEN OPTION OF ACCEPTING THE DEFAULT DISPLAY FORMAT AS

SPECIFIED IN THE SYNBOL TABLE OR SUPPLYING AN ALTERNATE FORMAT,

L LATCHES ITEMS | THRU 16 INTO ANALOS RECORDER OUTPUT BRIVERS,

§ SAVES CURRENT TENPLATE ON SCRATCH DISKETTE. USER MAY SPECIFY MHICH FILE

MUMBER IS MRITTEN 10 OR MAY ALLON SYSTEM TO SELECT EWPTY FILE.

T ALLONS USER TO SPECIFY PAGE TITLE OF UP TO 48 CHARACTERS IN LENGTH.
U UNLATCHES ANALOG RECORDER OGUTPUT BRIVERS AND FORCES PENS TO ZERQ,

NOTE : INDEPENDENT OF PAGE USED TO PERFORN ORIGINAL LATCH OPERATION.
(ESC) KEY CAUSES DISPLAY TO ENTER RUN MOBE. NMILE IN RUN MODE, OPTIONS ARE :
NALT DISPLAY AND RE-ENTER SETUP MODE BY PRESSING (RETURN) KEYT OR
EXIT DISPLAY AND INVOKE XAIBS COMMAND NEMU BY PRESSING (ESC) KEY.

— X

PRESS (ESC) TO EXIT,

Display 10. MP command help page.

81

82

X294 84.8.20 EXTENDED AIRCRAFT INTERROGATION & DISPLAY SYSTEN
FREE FORM STRAKE POSITION ANB COMING

FC A FiL 8
LEFT STRAKE POSITION -0.013 ~0.015
RIGHT STRAKE POSITION ~0.059 -0.05¢
STRAKE ACTUATOR COMIANG -0.016 -0.016

FILE 0. = 54 DISK = X-29 SCRATCH DISK (PATCH 2 IN)

Display 1l1. Example FF-driven display.

X29 84.8.20 EXTENDED AIRCRAFT INTERROGATION & DISPLAY SYSTEM
FREE FORN STRAKE POSITION AXD COMMAND

LEFT STRAXKE POSITION
RIGHT STRAKE POSITION
STRAKE ACTUATOR CONMAND

Ba3XGMD DaDATA E=ERASE HaHELP L=LIST S=SAVE TsTITLE (ESC)=RtM)

Display 12. Example FF setup page.

X294 84.8.20

PERMITS CREATION OF STATIC BACKGROUND IMAGE TO ACCOMPANY DATA.
NOTE i ALL CHARACTERS ALLOMWED INCLUDING SPECIAL CHARACTERS.

EXTENBED AIRCRAFT INTERROGATION & BISPLAY SYSTEM 08:10:35
FREE FORM OPERATOR ASSISTANCE INFORMATION 84

D PERMITS INSERTION, ALTERATION, OR DELETION OF BATA ITEN. FOR INSERTIONS
AND ALTERATIONS, CURSOR MUST BE POSITIONED AT LEFT END OF FIELD.
FOR DELETIONS, CURSOR MAY BE POSITIGNED AWVMHERE NITHIN BRACKETS.
CHAN) TWO-LETTER CODE FOR SOURCE CHAMMEL OR TMO BULAMKS TO BELETE ITEN.
VARIABLE) NAME OF PARAMETER TO BE DISPLAYED
NGTE : USER IS GIVEM QPTION OF ACCEPTING THE DEFAULT DISPLAY FORMAT AS
SPECIFIED IN THE SYMBOL TABLE OR SUPPLYING AN ALTERNATE FORMAT.

w“rrxm

ERASES ENTIRE TEMPLATE INCLUBING PASE TITLE.

DISPLAYS OPERATOR ASSISTANCE DISPLAY,

LISTS BATA ITENS IN CURRENT TEMPLATE TO EITHER CRT OR LINE PRINTER.
SAVES CURRENT TEMPLATE ON SCRATCH DISKETTE. USER MAY SPECIFY WHICH FILE

MMBER IS WRITTEN TO OR MAY ALLON SYSTEN TO SELECT EMPTY FILE,
T ALLOMS USER TO SPECIFY PAGE TITLE OF UP TO 48 CHARACTERS IN LEWGTH.
(ESC) KEY CAUSES DISPLAY TO ENVER RUN MODE. WHILE IN RUM NODE, OPTIONS ARE :
HALT DISPLAY AMD RE-ENTER SETUP MODE BY PRESSING (RETURM) KEY OR
EXIT DISPLAY AND INVOKE XAIDS COMMAMD MEWU BY PRESSING (ESC) KEY.
GENERAL MOTE : CURSOR POSITIONING USES FOUR ARRON KEYS PLUS (HOME), (TAB),

Display 13.

AND (RETURN} KEYS.
PRESS (ESC) TO £XIT,

RANGE RESTRICTED TO RONS 3 THRU 23.

FF command help page.

EXTENDED AIRCRAFT INTERROGATION & BISPLAY SYSTEM 08:10:32

29 MV 84

LIST DATA TEMPLATE TO “CRT" OR “PTR" ?) CRY

SEQ NO. RON COL FORMAT

8
8
8
10
10
10
12
12
12

0
1
2
3
4
H
6
7
8

END OF TEMPLATE

Display l4.

43

F10.3
F10.3
F10.3
F10.3
F10.3
F10.3
F10.3
F10.3
F10.3

CHaN
Al
A2
Al
Al
A2
A3
Al
A2
A

NANE & DESCRIPTION

LSS Lt Strake Position

LSS Lt Stroke Position

LSS Lt Strake Position

RSS Rt Strake Positios

RSS Rt Strake Position

RSS Rt Strake Position
PSTCHD+S Strake Act Comsand
PSTCAD+S Strake Act Coseand
PSTCMD+6 Strake Act Comsand

Example FF command list to CRT.

83

84

X294 84.8.20
DISKETTE

EXTENBED AIRCRAFT INTERROGATION & DISPLAY SYSTEN
XAIBS DISPLAYS SCRATCH DISKETTE MANAGER

DISPLAY SCRATCH DISKETTE OPERATION

v VIEN BISPLAYS BIRECTORY 2ord
L0 LOAD & ACTIVATE DISPLAY FILE 3 oaly
BEL DELETE DISPLAY FILE o}
LIST MRITE DIRECTORY TO PRINTER 2003
DWP SEQUENTIAL DUMP OF SCRATCH FILES TO PRINTER 3 oniy
INIT INITIALIZE NEW SCRATCN BISKETTE 2003

COPY COPY SELECTED DISPLAY FILE FROW DISK 70 DISK 3 to 2
(ESC) RETURN TO XAIDS COMMAND INTERPRETER

ENTER COMMNAND) ¥

Display 15. DK command menu.

X29A 84.8.20 EXTEMDED AIRCRAFT INTERROGATION & DISPLAY SYSTEN
DISKETTE XAIDS DISPLAYS SCRATCH BISKETTE MAMAGER 27 NV 84

DIRECTORY NAME ! X-29 SCRATCH DISK (PATCH 2 W)

CREATED : 09140108 8 JUM 84

NUMBER OF FILES : &4

41 13158:06 11 AN @4 PTCH REMOVE PATCH 04 - 10°

42 14102114 11 JUN B4 PTCH RENOVE PATCH 44 - CLP

4 1115112 19 AN 84 W LONGSSH INPUTS

M4 11314102 19 AN B4 W LATSSH INPUTS

43 09:50:83 12 AL 84 WP FNET TEST ALPHA FAILURES

4 09:59148 12 JL 84 W FNET TESTS OC FAILURES

& 10:02:40 12 JR 84 WP FMET TEST TOTAL TEWP FAILURES

48 10:08:44 12 AL B4 WP FMET TESTS WOM FAILURES(DEL NODE)
49 10:11:38 12 WL B4 WP FMET TESTS AHRS FAILURES

30 10012136 12 JR B4 WP FMET TESTS PS FAILURES

Scroll using Usr 32 or arrow kews. (ESC) to exit.

Display l6. Example DK view display.

X294 84.8.20 EXTEMBED AIRCRAFT INTERROGATION & DISPLAY SYSTEM
SYNBOLS SYMBOL TABLE MAMAGER

FILE SAVED : 13:51:20 28 NOV 84
OMNED BY : STM
CONTAINS : 230 SYNDOLS

SYNBOL TABLE MAMAGER COMMAND LIST :

SCAN = VIEW CURRENT TABLE
EDIT = EXAMINE/MODIFY TABLE ENTRIES

SAVE = WRITE CURRENT TABLE TO BISKETTE
LOAD = LDAD NEN TADLE FROM DISKETTE

NIPE = ERASE ENTIRE TADLE

NAME = REDEFINE SYNBOL TABLE NAME

LIST = COPY TAME T0 LINE PRINTER

(ESC) = RETURN TO XAIDS COMMAND INTERPRETER

ENTER COMMAND)

Display 17. SYM command menu.

X294 84.3.20 EXTEMBED AIRCRAFY INTERROGATION & DISPLAY SYSTEM
SYNBOLS SYMBOL TABLE MANAGER

TABLE NAME @ X-294 ARINC Bata Streas Swsbol Definition (Patch 42 in)

------- SUWFIELD ----—- --=n---—- CONTENTS ~------—=

1 SYNBOL MAME & BESCRIPTION ALPHAI Loc Ind Ansle of Attack
2 DISPLAY FORMAT F10.3

3 UNITS DEGREES

4 RELATED CHANNELS Al A2 A

S RAN DATA TYPE HSP

6 NO. 0F MEMORY LOCATIONS 1

7 STARTING ADDRESS 00000054

8 INERTING CONTROL 0000000000200000
9 MASKING CONTROL FFFFFFFFFFFFFFFF
10 DISPLAY ZERD 0,000
11 DISPLAY MAX 180.000

12 DISCRETE ZERO MESSAGE
13 DISLRETE ONE NESSAGE
14 RECORDER BIAS 0.000
RECORDER SCALE 180.000

SELECT OPERATION)

Display 18. Example SYM edit page.

TABLE NANE : X-29A ARINC Bats Stress Suabol Definition (Patch 82 im)

EDIT OPERATIONS : New Modify Clone Fiad Ue Down Resove (ESC)sEXIT

08:18:47
29 NOV 84

08:20:42
27 NOV 84

STATUS ¢
LINKED

LINKS ¢
UP Q0CE
X 00CF
DN 00C7

85

86

X29% 64.8.20 EXTENDED AIRCRAFT INTERRGGATION & DISPLAY SYSTEM
D RATE XAIBS X294 10P RS-232 SERIAL PORT CHECKOUT

CURRENT JAIDS 1/0 PROCESSOR RS-232 PORT STATUS !
USART ASSIGNMNENT DEVICE DAUD RATE NT QUELE ROV
¢ 0
0
0
0
9

SPARE

SEU #1 TERM 2400
SEU #1 NoBEN 20
SEY #2 TERM 40
SEU #2 NaBEN 200

DBAUD RATE CHANGE $=8END NSG R=DISPLAY RECEIVED MBS (ESCI=EXIT) B

SELECT USART (4-8) } 5
ENTER BESIRED BAUD RATE (75-17200)) 4800

Display 19. BAUD command display.

X294 84.8.20

COMMAND LIST !

MTO = 0y -4 -5 +4) +5 AUTO STEP PATTERN
SAN = OME HERTZ SAMTOOTH PATTERN
W =0, -4) =52 +4) +5 MANUAL STEP PATTERX
SEL = SELECT IMBIVIDUAL DAC & VOLTS
TEST = PERFORM TEST PROGRAM & RETURN STATUS
(ESC) = RETURN TO RIOBA EXECUTIVE

SELECTED PEN = 1
CURRENT PEN VALUE = 0.000
ENTER PEN QUTPUT (-5 TO +5 WOLTS)) 2.5

Display 20. CAL command display.

EXTENDED AIRCRAFT INTERROGATION & BISPLAY SYSTEM WuInR
CALIBRATE RTPRO RECORDER DAC CALIDRATE J0B 8 MV 8

1. Report No. 2. Government Accession No.

NASA TM-B86740

. Recipient’s Catalog No.

4. Title sand Subtitle
Degign and Initial Application of the Extended Aircraft
Interrogation and Display System — Multiprocessing Ground
Support Equipment for Digital Flight Systems

. Report Date

Japuary 1987

Performing Organization Code

1. Author(s)
Richard D. Glover

Performing Organization Report No.
H-1296

9. Performing Organization Name and Address
NASA Ames Research Center
Dryden Flight Research Facility
P.O., Box 273
Edwards, CA 93523-5000

. Work Unit No.

RTOP 533-02-51

1.

Contract or Grant No.

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

13.

Type of Report and Period Covered

Technical Memorandum

. Sponsoring Agency Code

15. Supplementary Notes
Contact author for further information on software.

16. Abstract

Research Center's Dryden Flight Research Facility.

A pipelined, multiprocessor, general-purpose ground support equipment for
digital flight systems has been developed and placed in service at the NASA Ames
The design is an outgrowth of
the earlier aircraft interrogation and display system (AIDS) used in support of
several research projects to provide engineering-units display of internal control
system parameters during development and qualification testing activities. The new
system, incorporating multiple 16-bit processors, is called extended AIDS (XAIDS)
and is now supporting the X-29A forward-swept-wing aircraft project. This report
describes the design and mechanization of XAIDS and shows the steps whereby a typi-
cal user may take advantage of its high throughput and flexible features.

17. Key Words (Suggested by Author(s))

Aircraft simulation
Aircraft test equipment
Data acquisition

Data display

18. Distribution Statement

Unclassified — Unlimited

Subject category 05

19. Security Classif. (of this report) 20. Security Classif. {of this page}

Unclassified

Unclassified

21. No. of Pages

22, Price’

96 A0S

*ror sale by the National Technical Information Service, Springfield, Virginia 22161.

	Cover Page
	Title Page
	Contents
	List of Tables
	List of Figures
	List of Screen Displays
	Summary
	Introduction
	Nomenclature
	Design Objectives
	Summary of Requirements
	System Hardware Overview
	Functional Description
	Software Overview
	Maintenance Processor Software
	Peripheral Processor Software
	Real-Time Processor Software
	Central Processor XAIDS Job Software
	XAIDS-User Interfaces Overview
	XAIDS Configuration for X-29A Project Support
	Operaton of the X-29A XAIDS
	Guide for the Prospective XAIDS Owner
	Future XAIDS Developments
	Future XAIDS Developments
	Concluding Remarks
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	References
	Tables 1-25
	Figures 1-14
	Display's 1-20
	Report Documentation Page

